Fluorine-atom initiated oxidation of CF3CF2H (HFC-125) studied by FTIR spectroscopy: product yields and kinetic modelling

(Note: The full text of this document is currently only available in the PDF Version )

Alam S. Hasson, Christopher M. Moore and Ian W. M. Smith


Abstract

A comprehensive study has been carried out of the oxidation of CF3CF2H (HFC-125). Reaction was initiated by continuous photolysis of F2 in the near-UV. The F atoms produced abstracted a hydrogen atom from CF3CF2H initiating oxidation in gas mixtures containing variable amounts of O2 and made up to a total pressure of 700 Torr with N2. Product yields were measured as a function of time using FTIR spectroscopy. Experiments were performed at room temperature and in mixtures containing different ratios of [F2] to [CF3CF2H]. The major products were COF2, CF3O3CF3 and CF3O3C2F5, consistent with C–C bond scission being the dominant loss process for CF3CF2O radicals and with previous studies which used chlorine atoms toinitiate oxidation. Attempts to match the experimental results with predictions using the FACSIMILE chemical modelling pro-gram were moderately successful and confirmed recent results regarding the equilibrium constant for: F+O2(+M)=FO2(+M).


References

  1. F. S. Rowland and M. J. Molina, Nature (London), 1974, 249, 810 CAS.
  2. F. S. Rowland and M. J. Molina, Chem. Eng. News, 1994, 72, 8.
  3. D. J. Weubbles, J. Geophys. Res., 1983, 88, 1433 CAS.
  4. Scientific Assessment of Stratospheric Ozone, 1989, vol II Search PubMed; World Meteorological Organization, Global Ozone Research and Monitoring Project, report no. 20.
  5. R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford, 2nd edn., 1991 Search PubMed.
  6. A. R. Ravishankara and E. R. Lovejoy, J. Chem. Soc., Faraday Trans., 1994, 90, 2159 RSC.
  7. T. J. Wallington and O. J. Nielsen, in Progress and Problems in Atmospheric Chemistry, ed. J. R. Barker, World Scientific, Singapore, 1995, ch. 15 Search PubMed.
  8. B. Sukornick, Int. J. Thermophys., 1982, 10, 553 CrossRef.
  9. E. O. Edney and D. J. Driscoll, Int. J. Chem. Kinet., 1992, 24, 1067 CrossRef CAS.
  10. E. C. Tuazon and R. Atkinson, J. Atmos. Chem., 1993, 16, 301 CAS.
  11. J. Sehested, T. Ellerman, O. J. Nielsen, T. J. Wallington and M. D. Hurley, Int. J. Chem. Kinet., 1993, 25, 701 CrossRef CAS.
  12. FACSIMILE program; UKAEA Harwell Laboratory, 1987.
  13. C. M. Moore and I. W. M. Smith, J. Chem. Soc., Faraday Trans., 1995, 91, 3014 Search PubMed.
  14. F. S. Fawcett, C. W. Tullock and D. D. Coffmen, J. Am. Chem. Soc., 1962, 84, 4275 CrossRef CAS.
  15. C. M. Moore, I. W. M. Smith and D. W. A. Stewart, Int. J. Chem. Kinet., 1994, 26, 813 CrossRef CAS.
  16. T. J. Wallington, J. Sehested, M. A. Dearth and M. D. Hurley, J. Photochem. Photobiol. A: Chem., 1993, 70, 5 CrossRef CAS.
  17. L. R. Anderson and W. B. Fox, J. Am. Chem. Soc., 1967, 89, 4313 CrossRef CAS.
  18. P. G. Thompson, J. Am. Chem. Soc., 1967, 89, 4316 CrossRef CAS.
  19. T. J. Wallington, M. D. Hurley, J. Shi, M. M. Maricq, J. Sehested, O. J. Nielsen and T. Ellermann, Int. J. Chem. Kinet., 1993, 25, 651 CrossRef.
  20. (a) R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1989, 18, 881 CAS; (b) R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1992, 21, 1125 CAS; (c) R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1997, 26, 521 CAS; (d) W. B. Demore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling Evaluation Number 11, NASA JPL-Publication 94-26, 1994 Search PubMed.
  21. P. Campuzano-Jost, A. Croce de Cobos, H. Hippler, M. Siefke and J. Troe, J. Chem. Phys., 1995, 102, 5317 CrossRef CAS.
  22. M. M. Maricq and J. S. Szente, J. Phys. Chem., 1992, 96, 10 862 CrossRef CAS.
  23. O. J. Nielsen, T. Ellerman, J. Sehested, E. Bartkiewicz, T. J. Wallington and M. D. Hurley, Int. J. Chem. Kinet., 1992, 24, 1009 CrossRef CAS.
  24. P. Biggs, C. E. Canosa-Mas, J.-M. Fracheboud, C. J. Percival, R. P. Wayne and D. E. Shallcross, J. Chem. Soc., Faraday Trans., 1997, 93, 379 RSC.
  25. (a) R. C. Kennedy and J. B. Levy, J. Phys. Chem., 1972, 76, 3480 CrossRef CAS; (b) L. Batt and R. Walsh, Int. J. Chem. Kinet., 1982, 14, 933 CrossRef CAS.
  26. J. Sehested and T. J. Wallington, Environ. Sci. Technol., 1993, 27, 146 CAS.
  27. P. Pagsberg, E. Ratajczak, A. Sillesen and J. T. Jodkowski, Chem. Phys. Lett., 1987, 141, 88 CrossRef CAS.
  28. J. L. Lyman and R. Holland, J. Phys. Chem., 1988, 92, 7232 CrossRef CAS.
  29. T. Ellerman, J. Sehested, O. J. Nielsen, P. Pagsberg and T. J. Wallington, Chem. Phys. Lett., 1994, 218, 287 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.