General aperiodic equivalent circuit for charge permeable thin-layer cells of symmetric or asymmetric types Part 3 Mixed conductance, polymer electrolyte asymmetric cells

(Note: The full text of this document is currently only available in the PDF Version )

Richard P. Buck and Carsten Mundt


Abstract

This paper presents forms of single species flux equation: Barker, Nernst–Planck, and electron hopping. The latter two are converted into responses I or jvs. φ functions that define T circuit elements. Two forms arise that define the implicit Ri or Re, and Ci or Ce per unit length (i=ion, e=electron), and the corresponding explicit R and C. The analysis uses as examples (1) a single dissolved, inert electrolyte salt M+ X-, and (2) a redox polymer electrolyte radical cation and anion, also M+, X-, undergoing second-order electron hopping from M to M+. The corresponding forms for the Rs and Cs are derived. Case 2 is the mixed conductance asymmetric cell which is illustrated to show how the dc bias changes the polymer cation, anion composition, and so determines different Re and Ce at each composition through the effective second-order, concentration-dependent electron hopping.

In Part 1, Barker–Brumleve–Buck (BBB) sub-circuit units, were illustrated, viz., the conventional two-feature mass transport-controlled impedance was generated. This finite two-port, four-terminal network for a single salt system, replaced the classical one-port, two-terminal cable transmission line analog because the latter covers only the Warburg feature. Results were specifically used to compare BBB impedances with shorted and open finite cables to show conditions of equivalence. Both symmetric and asymmetric cell results depend only on the ion or electron terminals used. In Part 2, the usual three-feature impedance plane plots for each ion requiring activation to cross the interface are generated and illustrated. In addition, residual cell solution resistance and total cell geometric capacitance were included to generate the four-feature impedance plots.


References

  1. G. C. Barker, J. Electroanal. Chem., 1973, 41, 201 CrossRef CAS.
  2. G. C. Barker, in Trans. of Symposium on Electrode Processes, ed. E. Yeager, Philadelphia, PA, 1959, Wiley, New York, 1961, pp. 325–367 Search PubMed.
  3. G. C. Barker, Pure Appl. Chem., 1969, 15, 239.
  4. G. C. Barker, J. Electroanal. Chem., 1960, 12, 495 CrossRef.
  5. G. C. Barker, J. Electroanal. Chem., 1969, 21, 127 CrossRef CAS.
  6. G. C. Barker, J. Electroanal. Chem., 1975, 58, 5 CrossRef CAS.
  7. G. C. Barker, J. Electroanal. Chem., 1973, 41, 205 CrossRef.
  8. R. P. Buck and C. Mundt, J. Chem. Soc., Faraday Trans., 1996, 92, 3947 RSC.
  9. R. P. Buck and C. Mundt, J. Chem. Soc., Faraday Trans., 1996, 92, 4987 RSC.
  10. R. P. Buck, J. Phys. Chem., 1988, 92, 4196 CrossRef CAS.
  11. T. R. Brumleve and R. P. Buck, J. Electroanal. Chem., 1981, 126, 73 CrossRef CAS.
  12. T. R. Brumleve and R. P. Buck, J. Electroanal. Chem., 1978, 90, 1 CrossRef CAS.
  13. R. P. Buck, J. Electroanal. Chem., 1986, 210, 1 CrossRef CAS.
  14. R. P. Buck, J. Membr. Science, 1984, 17, 1 Search PubMed.
  15. R. P. Buck, M. R. Madaras and R. Mackel, J. Electroanal. Chem., 1994, 366, 55 CrossRef CAS.
  16. C. Ho, I. D. Raistrick and R. A. Huggins, J. Electroanal. Chem., 1980, 127, 343 CAS.
  17. R. P. Buck, M. R. Madaras and R. Mackel, J. Electroanal. Chem., 1993, 362, 33 CrossRef CAS.
  18. A. B. Brown and F. C. Anson, Anal. Chem., 1977, 49, 1589 CrossRef CAS.
  19. P. J. Peerce and A. J. Bard, J. Electroanal. Chem., 1980, 114, 89 CrossRef CAS.
  20. W. J. Albery, M. G. Boutelle, P. L. Colby and A. R. Hillman, J. Electroanal. Chem., 1982, 133, 135 CrossRef CAS.
  21. W. J. Albery, P. H. Bartlett, C. P. Wilde and J. R. Darwent, J. Am. Chem. Soc., 1985, 107, 1854 CrossRef CAS.
  22. R. W. Murray, Chemically Modified Electrodes, in Electroanalytical Chemistry, ed. A. J. Bard, M. Dekker, Inc., New York, vol. 13, pp. 191–368 Search PubMed.
  23. M. Sharp, Anal. Chim. Acta, 1972, 59, 137 CrossRef CAS.
  24. M. Sharp, Anal. Chim. Acta, 1973, 65, 405 CrossRef CAS.
  25. R. P. Buck, Ion-Transport Phenomena: Charge Exchange and Transport into and within ‘Thick’ Ideal Membranes, in Ion-Transfer Kinetics: Principles and Applications, ed. J. Sandifer, VCH, New York, 1995, ch. 2, pp. 19–54 Search PubMed.
  26. R. P. Buck and P. Vanysek, J. Electroanal. Chem., 1990, 292, 73 CrossRef CAS.
  27. T. M. Nahir and R. P. Buck, J. Phys. Chem., 1993, 97, 12 363 CrossRef CAS.
  28. R. P. Buck, T. M. Nahir, V. V. Cosofret and E. Lindner, Anal. Proc. (London), 1994, 31, 301 Search PubMed.
  29. R. P. Buck and E. Lindner, Acc. Chem. Res., 1997, in press Search PubMed.
  30. R. Naegli, J. Redepenning and F. C. Anson, J. Phys. Chem., 1986, 90, 6227 CrossRef.
  31. S. Bruckenstein, P. Krtil and A. R. Hillman, J. Phys. Chem., 1997, submitted Search PubMed.
  32. X. Ren and P. G. Pickup, J. Electroanal. Chem., 1995, 396, 359 CrossRef CAS.
  33. X. Ren and P. G. Pickup, J. Electroanal. Chem., 1997, in press Search PubMed.
  34. J. R. Macdonald, J. Chem. Phys., 1974, 60, 343 CrossRef.
  35. J. R. Macdonald, J. Chem. Phys., 1974, 61, 3977 CrossRef CAS.
  36. J. R. Macdonald, J. Appl. Phys., 1974, 45, 73 CrossRef CAS.
  37. J. R. Macdonald, J. Electroanal. Chem., 1974, 53, 1 CrossRef CAS.
  38. W. J. Albery, Z. Chen, B. R. Horrocks, A. R. Mount, P. J. Wilson, D. Bloor, A. T. Monkman and C. M. Elliott, Faraday Discuss. Chem. Soc., 1989, 88, 247 RSC.
  39. W. J. Albery, C. M. Elliott and A. R. Mount, J. Electroanal. Chem., 1990, 288, 15 CrossRef CAS.
  40. W. J. Albery and A. R. Mount, J. Electroanal. Chem., 1992, 325, 95 CrossRef CAS.
  41. W. J. Albery and A. R. Mount, J. Chem. Soc., Faraday Trans., 1993, 89, 327 RSC.
  42. W. J. Albery and A. R. Mount, J. Chem. Soc., Faraday Trans., 1994, 90, 1115 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.