Friedel–Crafts catalysis using supported reagents Synthesis, characterization and catalytic applications of sol–gel-derived aluminosilicates

(Note: The full text of this document is currently only available in the PDF Version )

Jack M. Miller, David Wails, J. Stephen Hartman and Jennifer L. Belelie


Abstract

Aluminosilicate catalyst supports have been prepared from aluminium tri-sec-butoxide and tetraethyl orthosilicate in butanol using sol–gel methodologies, thereby providing useful supports for zinc chloride, to generate heterogeneous Friedel–Crafts alkylation catalysts. The optimum loading for these sol–gel-derived materials is higher than that of K10, the support for the commercially available catalyst ‘Clayzic’, and gives significantly higher catalytic activity in a standard test reaction. A more convenient, ‘one-pot’ approach, in which zinc chloride is added during the sol–gel synthesis, generates catalysts which also show significantly higher activity than Clayzic. The resulting materials have been characterized by 29Si cross-polarization magic-angle spinning (CP-MAS) and 27Al MAS NMR, IR spectroscopy and by surface area and pore volume analysis. The Si:Al ratio, drying temperature and relative amounts of water and (non-aqueous) solvent have pronounced effects on catalytic activity. The most active catalysts show relatively high levels of framework aluminium species compared with non-framework sites, and also have higher surface areas and pore volumes than materials with lower activity.


References

  1. J. H. Clark, A. P. Kybett and D. J. Macquarrie, Supported Reagents—Preparation, Analysis and Applications, VCH, New York, 1992 Search PubMed.
  2. Clayzic is a trademark of Contract Catalysts, Merseyside, UK.
  3. J. H. Clark, A. P. Kybett, D. J. Macquarrie, S. J. Barlow and P. Landon, J. Chem. Soc., Chem. Commun., 1989, 1353 RSC.
  4. J. H. Clark, S. R. Cullen, S. J. Barlow and T. W. Bastock, J. Chem. Soc., Perkin Trans. 2, 1994, 1117 RSC.
  5. S. J. Barlow, T. W. Bastock, J. H. Clark and S. R. Cullen, Tetrahedron Lett., 1993, 34, 3339 CrossRef CAS.
  6. D. R. Brown, H. G. M. Edwards, D. W. Farwell and J. Massam, J. Chem. Soc., Faraday Trans., 1996, 92, 1027 RSC.
  7. J. Massam and D. R. Brown, Catal. Lett., 1995, 35, 335 CrossRef CAS.
  8. A. Cornelius, P. Laszlo and S. Wang, Tetrahedron Lett., 1993, 34, 3849 CrossRef.
  9. S. J. Barlow, J. H. Clark, M. R. Darby, A. P. Kybett, P. Landon and K. Martin, J. Chem. Res. (S), 1991, 74 Search PubMed.
  10. C. N. Rhodes and D. R. Brown, J. Chem. Soc., Faraday Trans., 1992, 88, 2269 RSC.
  11. C. N. Rhodes and D. R. Brown, J. Chem. Soc., Faraday Trans., 1993, 89, 1387 RSC.
  12. C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic Press, New York, 1990 Search PubMed.
  13. International Union of Pure and Applied Chemistry, Pure Appl. Chem., 1985, 57, 604 Search PubMed.
  14. A. D. Irwin, J. S. Holmgren and J. Jonas, J. Mater. Sci., 1988, 23, 2908 CrossRef CAS.
  15. G. Sheng, L. Chu, W. A. Zeltner and M. A. Anderson, J. Non-Cryst. Solids, 1992, 147/148, 548.
  16. G. A. Pozarnsky and A. V. McCormick, J. Non-Cryst. Solids, 1995, 190, 212 CrossRef CAS.
  17. G. Engelhardt and D. Michel, High Resolution Solid State NMR of Silicates and Zeolites, Wiley, Chichester, 1987 Search PubMed.
  18. K. J. D. MacKenzie, R. H. Meinhold, J. E. Patterson, H. Schneider, M. Schmucker and D. Voll, J. Eur. Ceram. Soc., 1996, 16, 1299 CrossRef CAS.
  19. R. E. Grim, Clay Mineralogy, 2nd edn., McGraw-Hill, New York, 1968 Search PubMed.
  20. S. D. Jones, T. N. Pritchard and D. F. Lander, Microporous Mater., 1995, 3, 419 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.