Upper limit for the generation of N2O from reaction of O2(A3Σu+) and N2

(Note: The full text of this document is currently only available in the PDF Version )

Eunsook S. Hwang, Bart Buijsse, Richard A. Copeland, Haris Riris, Clint B. Carlisle and Tom G. Slanger


Abstract

Evidence from several sources suggest possible in situ production of N2O in the stratosphere. Considering that solar photoabsorption provides a large stratospheric source of O2(A3Σu+), and since vibrational levels of v[greater than or equal, slant]6 are primarily removed by N2, the O2(A3Σu+ )+N2 system is studied to determine whether it is an atmospherically significant N2O source. Using 243–250 nm photoexcitation to produce vibrationally excited O2(A3Σu+, v=7–10), and frequency modulation diode laser spectroscopy as the detector of N2O, we examine the products generated in a closed cell. We thereby set an upper limit of 0.002% on the N2O yield for the process, and conclude that stratospheric N2O production by this route is not significant compared to existing ground-based sources. The stability of N2O in an N2O–O3–N2 mixture subjected to prolonged 245 nm radiation is also studied. For low levels of O3 (10 ppm) and N2O (40–90 ppb), no loss of N2O is observed.


References

  1. D. L. Albritton and R. T. Watson, World Meteorological Organization, Geneva, Switzerland, 1991.
  2. T. Machida, T. Nakazawa, Y. Fujii, S. Aoki and O. Watanabe, Geophys. Res. Lett., 1995, 22, 2921 CrossRef CAS.
  3. S. S. Prasad, J. Geophys. Res., in press Search PubMed.
  4. R. A. Copeland, K. Knutsen and T. G. Slanger, in Proceedings of the International Conference on Lasers '93, ed. V. J. Corcoran and T. A. Goldman, STS Press, McLean, VA, 1994, p. 318 Search PubMed.
  5. K. Knutsen, M. J. Dyer and R. A. Copeland, J. Chem. Phys., 1994, 101, 7415 CrossRef CAS.
  6. E. S. Hwang and R. A. Copeland, Geophys. Res. Lett., 1997, 24, 643 CrossRef CAS.
  7. R. A. Copeland, K. Knutsen, M. E. Onishi and T. J. Yalçin, Chem. Phys., 1996, 105, 10 349 CrossRef CAS.
  8. K.-R. Kim and H. Craig, Science, 1993, 262, 1855 CAS.
  9. M. H. Thiemens, T. Jackson, E. C. Zipf, P. W. Erdman and C. Van Egmond, Science, 1995, 270, 969 CAS.
  10. D. Krankowsky and K. Mauersberger, Science, 1996, 274, 1324 CrossRef CAS.
  11. G. I. Gellene, Science, 1996, 274, 1344 CrossRef CAS.
  12. S. S. Prasad, J. Geophys. Res., 1994, 99, 5285 CrossRef CAS.
  13. E. C. Zipf, Nature (London), 1980, 287, 523 CrossRef CAS.
  14. E. C. Zipf and S. S. Prasad, Nature (London), 1982, 295, 133 CrossRef CAS.
  15. G. Black, R. M. Hill, R. L. Sharpless, T. G. Slanger and N. Albert, J. Photochem., 1983, 22, 369 CrossRef CAS.
  16. M. P. Iannuzzi, J. B. Jeffries and F. Kaufman, Chem. Phys. Lett., 1982, 87, 570 CrossRef CAS.
  17. M. E. Fraser and L. G. Piper, J. Phys. Chem., 1989, 93, 1107 CrossRef CAS.
  18. T. G. Slanger and P. C. Cosby, J. Phys. Chem., 1988, 92, 267 CrossRef CAS.
  19. D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts and G. Meijer, Can. J. Phys., 1994, 72, 1109 CAS.
  20. D. E. Shemansky, J. Phys. Chem., 1969, 51, 689 CrossRef CAS.
  21. R. A. Copeland, J. Chem. Phys., 1994, 100, 744 CrossRef CAS.
  22. V. Degen, J. Geophys. Res., 1972, 27, 6213.
  23. R. A. Young and G. Black, J. Chem. Phys., 1996, 44, 3741 CrossRef.
  24. R. J. McNeal and S. C. Durana, J. Chem. Phys., 1969, 51, 2955 CrossRef CAS.
  25. R. D. Kenner and E. A. Ogryzlo, Int. J. Chem. Kinet., 1980, 12, 501 CrossRef CAS.
  26. R. D. Kenner and E. A. Ogryzlo, Chem. Phys. Lett., 1983, 103, 209 CrossRef CAS.
  27. R. D. Kenner and E. A. Ogryzlo, Can. J. Chem., 1983, 61, 922.
  28. P. M. Borrell, P. Borrell and D. A. Ramsay, Can. J. Phys., 1986, 64, 721 CAS.
  29. J. Wildt, G. Bednarek, E. H. Fink and R. P. Wayne, Chem. Phys., 1988, 122, 463 CrossRef CAS.
  30. L. C. Lee and T. G. Slanger, J. Chem. Phys., 1978, 69, 4053 CrossRef CAS.
  31. G. C. Bjorklund, Opt. Lett., 1980, 5, 15 Search PubMed.
  32. G. C. Bjorklund, M. D. Levenson, W. Lenth and C. Ortiz, Appl. Phys. B, 1983, 32, 145.
  33. H. Riris, C. B. Carlisle, R. E. Warren and D. E. Cooper, Opt. Lett., 1994, 19, 144 CAS.
  34. A. Fried, B. Henry and J. R. Drummond, Appl. Opt., 1993, 32, 821 CAS.
  35. G. Janik, C. B. Carlisle and T. F. Gallagher, JOSA B, 1986, 3, 1070 Search PubMed.
  36. D. E. Cooper and R. E. Warren, JOSA B, 1987, 4, 470 Search PubMed.
  37. K. Yoshino, J. R. Esmond, J. E. Murray, W. H. Parkinson, A. P. Thorne, R. C. M. Learner and G. Cox, J. Chem. Phys., 1995, 103, 1243 CrossRef CAS.
  38. T. G. Slanger, D. L. Huestis, P. C. Cosby, H. Naus and G. Meijer, J. Chem. Phys., 1996, 105, 9393 CrossRef CAS.
  39. T. G. Slanger, R. L. Sharpless, G. Black and S. V. Filseth, J. Chem. Phys., 1974, 61, 5022 CrossRef CAS.
  40. J. Shi and J. R. Barker, J. Geophys. Res., 1992, 97, 13 039.
  41. K. Minschwaner, R. J. Salawitch and M. B. McElroy, J. Geophys. Res., 1993, 98, 10 543.
  42. J. B. Kumer, J. L. Mergenthaler and A. E. Roche, Geophys. Res. Lett., 1993, 20, 1239 CAS.
  43. M. B. McElroy and D. B. A. Jones, Global Biogeochem. Cycles, 1996, 10, 651 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.