Conformations and rotational barriers of 2,2′-bi-1H-imidazole Semiempirical, ab initio, and density functional theory calculations

(Note: The full text of this document is currently only available in the PDF Version )

Soo Gyeong Cho, Young Gu Cheun and Bang Sam Park


Abstract

Conformations and rotational barriers of 2,2′-bi-1H-imidazole (1) have been investigated by using semiempirical, ab initio, and density functional theory (DFT) calculations. All theoretical methods employed in this study agree that the trans conformation of 1 is the global minimum, and the cis conformation is a transition state. Although semiempirical methods have located only these two stationary points, ab initio and DFT calculations have found additional local minima at a slightly skewed cis conformation. The torsional angle between two imidazole ring planes at these local minima is calculated to be 26.3° at HF/3-21G, 45.9° at HF/6-31G*, and 37.8° at B3LYP/6-31G*. Our best estimate for the overall rotational barrier of 1 through the cis conformation is 11.8 kcal mol-1, which is obtained from B3LYP/6-31G* calculations with the correction of zero-point vibrational energy. Estimations of this barrier by semiempirical methods are significantly lower than 8.6 kcal mol-1 by AM1, and 10.6 kcal mol-1 by PM3, while the overall rotational barriers predicted by the SCF methods (15.6 and 13.6 kcal mol-1 at the HF/3-21G and HF/6-31G* levels, respectively) are considerably higher than the B3LYP/6-31G* result. In order to better understand the origins of the rotational barrier, we have attempted to analyze (1) changes of the electrostatic potential maps and the Vmin(r) values, (2) Fourier expansion terms for rotational potential energy functions, and (3) the bond length change during internal rotation. Based on these analyses, electrostatic interaction and π-conjugation appear to play an important role in forming the shape of the rotational barrier.


References

  1. (a) P. G. Rasmussen, O. H. Bailey and J. C. Bayon, Inorg. Chem., 1984, 23, 338 CrossRef CAS; (b) P. G. Rasmussen, O. H. Bailey, J. C. Bayon and W. M. Butler, Inorg. Chem., 1984, 23, 343 CrossRef CAS; (c) T. Akutagawa and G. Saito, Bull. Chem. Soc. Jpn., 1995, 68, 1753 CAS; (d) T. Akutagawa, G. Saito, H. Yamochi, M. Kusunoki and K. Sakaguchi, Synth. Met., 1995, 69, 591 CrossRef CAS.
  2. K. Nakasuji, M. Tadokoro, T. Itoh, J. Toyoda and K. Isobe, Synth. Met., 1995, 71, 2071 CrossRef CAS.
  3. W. Chi and H. L. Collier, J. Macromol. Sci., Chem., 1988, A25, 1543 Search PubMed.
  4. M. J. Bloemink, H. Engelking, S. Karentzopoulos., B. Krebs and J. Reedijk, Inorg. Chem., 1996, 35, 619 CrossRef CAS.
  5. (a) D. T. Cromer and C. B. Storm, Acta Crystallogr., Sect. C, 1990, 60, 1957 CrossRef; (b) D. T. Cromer and C. B. Storm, Acta Crystallogr., Sect. C, 1990, 60, 1959 CrossRef.
  6. (a) J. Kendrick, J. Chem. Soc., Faraday Trans., 1990, 86, 3995 RSC; (b) M. A. V. Ribeiro da Silva, V. M. F. Morais, M. A. R. Matos and C. M. A. Rio, J. Org. Chem., 1995, 60, 5291 CrossRef; (c) M. Rubio, M. Merchan and E. Orti, Theor. Chim. Acta, 1995, 91, 17 CrossRef CAS; (d) J. Cioslowski, P. Piskorz, G. Liu and D. Moncrieff, J. Phys. Chem., 1996, 100, 19 333 CrossRef CAS.
  7. D. Kirin, J. Chem. Phys., 1994, 100, 9123 CrossRef CAS.
  8. (a) H. Bock, S. Nick, C. Näther and W. Bensch, Chem. Eur. J., 1995, 1, 557 CAS; (b) K. Szabo, S. Kunsagimate and N. Marek, J. Mol. Struct. (THEOCHEM), 1995, 333, 275 CrossRef CAS; (c) S. T. Howard, J. Am. Chem. Soc., 1996, 188, 10 269 CrossRef CAS.
  9. (a) M. Kranz, T. Clark and P. v. R. Schleyer, J. Org. Chem., 1993, 58, 3317 CrossRef CAS; (b) C. Trindle and H. Singh, J. Org. Chem., 1995, 60, 5708 CrossRef CAS; (c) G. Barbarella, M. Zambianchi, L. Antolini, U. Folli, F. Goldoni, D. Iarossi, L. Schnetti and A. Bongini, J. Chem. Soc., Perkin Trans. 2, 1995, 1869 RSC; (d) Y. Yamaguchi and T. Yamabe, Int. J. Quantum Chem., 1996, 57, 73 CrossRef CAS; (e) M. Feigel, J. Mol. Struct. (THEOCHEM), 1996, 366, 83 CrossRef CAS; (f) T. B. Grindley, P. J. MacLeod, J. A. Pincock and T. S. Cameron, Can. J. Chem., 1996, 74, 1795 CAS.
  10. D. T. Cromer, R. R. Ryan and C. B. Storm, Acta Crystallogr., Sect. C, 1987, 43, 1435 CrossRef.
  11. R. R. Mohanty and S. Jena, Indian J. Chem., Sect. A, 1994, 33, 651.
  12. V. Barone, F. Leji, C. Minichino, N. Russo and M. Tascano, J. Chem. Soc., Perkin Trans. 2, 1988, 1975 RSC.
  13. Gaussian 94, Revision C.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  14. J. J. P. Stewart, MOPAC 6.0, QCPE No. 455.
  15. (a) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939 CrossRef CAS; (b) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797 CrossRef CAS.
  16. (a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS; (b) W. J. Hehre, R. D. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS.
  17. (a) C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS; (b) J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp., 1976, 10, 1 Search PubMed.
  18. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  19. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 1372 CrossRef CAS; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  20. (a) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS; (b) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157.
  21. M. J. S. Dewar, E. G. Joebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  22. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  23. K. B. Wiberg, Tetrahedron, 1968, 24, 1083 CrossRef CAS.
  24. (a) W. M. F. Fabian, J. Comput. Chem., 1988, 9, 369 CrossRef CAS; (b) S. G. Cho, F. K. Cartledge, R. J. Unwalla and S. Profeta Jr., J. Mol. Struct (THEOCHEM), 1990, 204, 79 CrossRef; (c) H. F. Dos Santos and W. B. De Almeida, J. Mol. Struct (THEOCHEM), 1995, 335, 129 CrossRef CAS.
  25. L. Radom, W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 1972, 94, 2371 CrossRef CAS.
  26. K. B. Wiberg, J. Am. Chem. Soc., 1986, 108, 5817 CrossRef CAS.
  27. (a) Chemical Applications of Atomic and Molecular Potentials, ed. P. Politzer and D. G. Truhlar, Plenum Press, New York, 1981 Search PubMed; (b) P. Politzer and J. Murray, in Reviews in Computational Chemistry II, ed. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 1991, vol. 2, ch. 7 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.