CuIIlocation and adsorbate interaction in CuII-exchangedsynthetic Na-omega gallosilicate EPR and electron spin echo modulation studies

(Note: The full text of this document is currently only available in the PDF Version )

Jong-Sung Yu, Jeong Yeon Kim, Chul Wee Lee, Sun Jin Kim, Suk Bong Hong and Larry Kevan


Abstract

The location of CuII and its interaction with adsorbates in CuII-exchanged synthetic Na-omega gallosilicate have been studied by EPR and electron spin echo modulation (ESEM) spectroscopies. These results are compared with those of CuII-exchanged Na-omega aluminosilicate and also those of L and offretite gallosilicates of similar channel type and size, and the differences are discussed. In general, similar results to those for CuNa-omega gallosilicate are obtained for CuNa-omega aluminosilicate. It is concluded that, in fresh hydrated omega material, CuII is in a main channel coordinating to three water molecules and to framework oxygens in the main channel wall. A minor CuII diaquo species not seen in the gallosilicate is observed in the aluminosilicate. Upon evacuation at increasing temperature, CuII moves from the main channel to a gmelinite cage. Dehydration at 410°C produces one CuII species located in a six-ring window of a gmelinite cage, based on a lack of broadening of its EPR lines by oxygen. In L and offretite gallosilicates, there is evidence for back migration of CuII from a hexagonal prism into a main channel to coordinate with adsorbates. However, in omega the back migration from a gmelinite cage to a main channel seems to be blocked, as shown by very slow changes in the EPR spectra and differing coordination numbers for methanol, ethanol and propanol to CuII when alcohols are adsorbed. CuII does not form a complex with propanol or larger adsorbates in omega gallosilicate. It is suggested that, in omega, small adsorbates must diffuse into a gmelinite cage where CuII is located, to form CuII–adsorbate complexes. The slow changes in the EPR spectra correspond to the time for adsorbate diffusion into a gmelinite cage. CuII interacts with one molecule each of ethylene and acetonitrile, based on EPR and ESEM analyses. CuII forms a square-planar complex containing four molecules of ammonia, based on resolved nitrogen superhyperfine coupling.


References

  1. J. M. Newsam and D. E. W. Vaughan, Stud. Surf. Sci. Catal., 1986, 28, 457 CAS.
  2. (a) R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982, p. 251 Search PubMed; (b) R. Szostak, Molecular Sieves, Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, 1989, ch. 4 Search PubMed.
  3. W. B. Yelon, D. Xie, J. M. Newsam and J. Dunn, Zeolites, 1990, 10, 553 CAS.
  4. J. Selbin and R. B. Mason, J. Inorg. Nucl. Chem., 1961, 20, 222 CrossRef CAS.
  5. G. H. Kuhl, J. Inorg. Nucl. Chem., 1971, 33, 3261 CrossRef.
  6. D. E. W. Vaughan, M. T. Melchior and A. J. Jacobson, in Intrazeolite Chemistry, ed. G. D. Stucky and F. G. Dwyer, ACS Symp. Ser., 1984, vol. 218, p. 231 Search PubMed.
  7. J. M. Newsam, D. E. W. Vaughan and K. G. Strohmajer, J. Phys. Chem., 1995, 99, 9924 CrossRef CAS.
  8. R. H. Jarman, A. J. Jacobson and M. T. Melchior, J. Phys. Chem., 1984, 88, 5748 CrossRef CAS.
  9. G. P. Handdreck and T. D. Smith, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 3215 RSC.
  10. R. Monque, A. Parisi, S. Gonzalez and G. Giannetto, Zeolites, 1992, 12, 806 CrossRef CAS.
  11. A. J. Chandwadkar, R. A. Abdulla, S. G. Hedge and J. B-Nagy, Zeolites, 1993, 13, 470 CrossRef CAS.
  12. J. M. Newsam, Mater. Res. Bull., 1986, 21, 661 CrossRef CAS.
  13. P. A. Wright, J. M. Thomas, A. K. Cheetham and A. K. Nowak, Nature (London), 1985, 318, 611 CrossRef.
  14. J.-S. Yu, S. J. Kim, S. B. Hong and L. Kevan, J. Chem. Soc., Faraday Trans., 1996, 92, 855 RSC.
  15. J.-S. Yu, S. B. Hong and L. Kevan, Appl. Magn. Reson., 1996, 10, 575 CAS.
  16. J.-S. Yu, J. W. Ryoo, S. J. Kim, S. B. Hong and L. Kevan, J. Phys. Chem., 1996, 100, 12624 CrossRef CAS.
  17. J.-S. Yu, J.-M. Comets and L. Kevan, J. Phys. Chem., 1993, 97, 11 047 CrossRef CAS.
  18. J.-S. Yu and L. Kevan, J. Phys. Chem., 1994, 98, 12436 CrossRef CAS.
  19. J.-S. Yu, J. W. Ryoo, C. W. Lee, S. J. Kim, S. B. Hong and L. Kevan, J. Chem. Soc., Faraday Trans., 1997, 93, 1225 RSC.
  20. W. M. Meier, D. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, Amsterdam, 4th edn., 1996, p. 136 Search PubMed.
  21. E. Galli, Cryst. Struct. Commun., 1974, 3, 339 Search PubMed.
  22. R. Rinaldi, J. J. Pluth and J. V. Smith, Acta Crystallogr. Sect. B, 1975, 31, 1603 CrossRef.
  23. E. Ponthieu, P. Grange, J. F. Joly and F. Raatz, Zeolites, 1992, 12, 395 CrossRef CAS.
  24. D. W. Beck, Zeolite Molecular Sieves, Wiley, New York, 1974, p. 113 Search PubMed.
  25. A. Sayari, J. R. Morton and K. F. Preston, J. Phys. Chem., 1989, 93, 2093 CrossRef.
  26. J. M. Bennett and J. A. Gard, Nature (London), 1967, 214, 1005 CAS.
  27. R. Aiello, R. M. Barrer, J. A. Davis and I. S. Kerr, J. Chem. Soc., Faraday Trans., 1970, 66, 1610 RSC.
  28. J. A. Gard and J. M. Tait, Adv. Chem. Ser., 1971, 101, 230 Search PubMed.
  29. P. Massiani, F. Fiajula, F. Figueras and J. Sanz, Zeolites, 1988, 8, 332 CAS.
  30. C. A. Fyfe, G. C. Gobbi, G. J. Kennedy, J. D. Graham, R. S. Ozubko, W. Murphy, A. Bothner-By, J. Dadok and A. S. Chesnick, Zeolites, 1985, 5, 179 CrossRef CAS.
  31. R. Aiello and R. M. Barrer, J. Chem. Soc. A., 1970, 1470 RSC.
  32. J. Klinowski and M. W. Anderson, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 569 RSC.
  33. J. Klinowski, M. W. Anderson and J. M. Thomas, Chem. Soc., Chem. Commun., 1983, 525 RSC.
  34. E. Ponthieu and P. Grange, Zeolites, 1992, 12, 402 CrossRef CAS.
  35. R. H. Jarman, A. J. Jacobson and M. T. Melchior, J. Phys. Chem., 1984, 88, 5748 CrossRef CAS.
  36. J. M. Newsam, R. H. Jarman and A. J. Jacobson, Mater. Res. Bull., 1985, 20, 125 CrossRef CAS.
  37. M. M. J. Treacy, J. B. Higgins and R. von Ballmoos, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, Amsterdam, 3rd edn., 1996, p. 510 Search PubMed.
  38. J.-S. Yu and L. Kevan, J. Phys. Chem., 1991, 95, 3262 CrossRef CAS.
  39. J.-S. Yu and L. Kevan, J. Phys. Chem., 1990, 94, 7620 CrossRef CAS.
  40. J.-S. Yu and L. Kevan, J. Phys. Chem., 1990, 94, 7612 CrossRef CAS.
  41. L. Kevan, in Time Domain Electron Spin Resonance, ed. L. Kevan and R. N. Schwartz, Wiley-Interscience, New York, 1979, ch. 8 Search PubMed.
  42. A. Benetis and A. Westerling, J. Magn. Reson., 1990, 86, 97.
  43. L. Kevan, in Modern Pulsed and Continuous-Wave Electron Spin Resonance ed. L. Kevan and M. K. Bowman, Wiley-Interscience, New York, 1990, ch. 5 Search PubMed.
  44. M. W. Anderson and L. Kevan, J. Phys. Chem., 1987, 91, 4174 CrossRef CAS.
  45. C. E. Sass and L. Kevan, J. Phys. Chem., 1989, 93, 4669 CrossRef CAS.
  46. A. Abragam and B. Bleancy, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1990, p. 456 Search PubMed.
  47. R. G. Herman, Inorg. Chem., 1979, 18, 995 CrossRef CAS.
  48. J.-S. Yu and L. Kevan, J. Phys. Chem., 1990, 94, 5995 CrossRef CAS.
  49. J.-S. Yu, J.-M. Comets and L. Kevan, J. Phys. Chem., 1993, 97, 10433 CrossRef CAS.
  50. J.-S. Yu, C. W. Lee and L. Kevan, J. Phys. Chem., 1994, 98, 5736 CrossRef CAS.
  51. J.-S. Yu and L. Kevan, J. Phys. Chem., 1994, 98, 10 225 CrossRef CAS.
  52. R. D. Willett, J. Chem. Phys., 1964, 41, 2243 CrossRef CAS.
  53. G. Felsenfeld, Proc. R. Soc. London, Ser. A, 1956, 236, 506.
  54. Y. Sendoda and Y. Ono, Zeolites, 1986, 6, 209 CrossRef.
  55. X. Chen and L. Kevan, J. Am. Chem. Soc., 1991, 113, 2861 CrossRef CAS.
  56. C. W. Lee, X. Chen and L. Kevan, J. Phys. Chem., 1992, 96, 357 CrossRef CAS.
  57. C. W. Lee, X. Chen and L. Kevan, J. Phys. Chem., 1991, 95, 8626 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.