FTIR and EPR characterisation of copper-exchanged mordenites and beta zeolites

(Note: The full text of this document is currently only available in the PDF Version )

Cesare Oliva, Elena Selli, Alessandro Ponti, Luca Correale, Vincenzo Solinas, Elisabetta Rombi, Roberto Monaci and Lucio Forni


Abstract

Sodium mordenites and beta zeolites, partially exchanged with Cu2+, were characterised by means of Fourier transform infrared (FTIR) and both continuous-wave and pulse electron paramagnetic resonance (EPR) spectroscopies, in order to shed light on the catalytic role of copper ions in the ammoxidation of 1-methylnaphthalene. FTIR analysis showed that ammonia interacts with both Brønsted and Lewis acid sites, while 1-methylnaphthalene is mainly coordinated through π-complexes. The acidity of the catalysts was also determined through FTIR analysis of the adsorbed pyridine. The main changes in the coordination sphere of Cu2+ ions were observed by EPR analysis after ammonia adsorption and after catalyst use, while adsorption of 1-methylnaphthalene had a very minor effect. Primary electron spin echo envelope modulation spectra after catalytic use showed the presence of organic radicals, having a relaxation time of longer than the Cu2+ ions. The latter are confirmed as the active reaction centres and should be located in the side pockets of the mordenites, and be unaccessible to the aromatic system of 1-methylnaphthalene. This explains the higher selectivity observed with mordenites. In the more acidic beta zeolites the presence of copper ions on the walls of large channels initially favours side reactions, but also makes adsorbed ammonia more available for ammoxidation.


References

  1. G. Centi and S. Perathoner, Appl. Catal., A, 1995, 132, 179 CrossRef CAS.
  2. B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143 CrossRef CAS.
  3. B. Wichterlová, J. Dedecek and Z. Sobalík, in Catalysis by Microporous Materials, ed. H. K. Beyer, H. G. Karge, I. Kiricsi and J. B. Nagy, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, vol. 94, 1995 Search PubMed.
  4. J. Dedecek, Z. Sobalík, Z. Tvaruzková, D. Kaucký and B. Wichterlová, J. Phys. Chem., 1995, 99, 16 327 CrossRef CAS.
  5. A. V. Kucherov, A. A. Slinkin, D. A. Kondrat'ev, T. N. Bondarenko, A. M. Rubinshtein and Kh. M. Minachev, Kinet. Katal., 1985, 26, 409 Search PubMed.
  6. Y. Kuroda, Y. Yoshikawa, S. Konno, H. Hamano, H. Maeda, R. Kumashiro and M. Nagao, J. Phys. Chem., 1995, 99, 10 621 CrossRef CAS.
  7. R. A. Schoonheydt, Catal. Rev. Sci. Eng., 1993, 35, 129 Search PubMed.
  8. J. Fu, I. Ferino, R. Monaci, E. Rombi, V. Solinas and L. Forni, Appl. Catal., A, 1997, 156, 241 CrossRef.
  9. W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, Butterworth-Heinemann, 3rd edn., London, 1992 Search PubMed.
  10. T. Barzetti, E. Selli, D. Moscotti and L. Forni, J. Chem. Soc., Faraday Trans., 1996, 92, 1401 RSC.
  11. A. Schweiger, in Modern Pulsed and Continuous Wave Electron Spin Resonance, ed. L. Kevan and M. K. Bowman, Wiley, New York, 1990 Search PubMed.
  12. J. Connerton, R. W. Joyner and M. B. Pandey, J. Chem. Soc., Faraday Trans., 1995, 91, 1841 RSC.
  13. H. Knözinger, in Elementary Reaction Steps in Heterogeneous Catalysis, ed. R. W. Joyner and R. A. van Santen, Kluwer, Dordrecht, 1993, p. 267 Search PubMed.
  14. J. Dedecek and B. Wichterlová, J. Phys. Chem., 1994, 98, 5721 CrossRef CAS.
  15. J. Howard and J. M. Nicol, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 1233 RSC.
  16. S. Dzwigaj, A. de Mallmann and D. Barthomeuf, J. Chem. Soc., Faraday Trans., 1990, 86, 431 RSC.
  17. C. E. Sass and L. Kevan, J. Phys. Chem., 1989, 93, 4669 CrossRef CAS.
  18. G. F. McCann, G. J. Millar, G. A. Bowmaker and R. P. Cooney, J. Chem. Soc., Faraday Trans., 1995, 91, 4321 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.