Oxidation of glyoxal initiated by OH in oxygenated aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

George V. Buxton, Treena N. Malone and G. Arthur Salmon


Abstract

The kinetics and mechanism of the oxidation of glyoxal, which is a constituent of cloud water, initiated by OH in oxygenated solution have been investigated using pulse radiolysis with optical and conductivity detection of the transient species, and steady-state radiolysis with spectrophotometric and ion chromatographic analysis of the permanent products. The data obtained are consistent with glyoxal being present in the form of the dihydrate [CH(OH)2]2 which is oxidised to glyoxylic acid (pKa=3.4) and hydrogen peroxide via a peroxyl radical O2C(OH)2CH(OH)2 that splits off HO2 in a non-rate determining step. The following rate constants have been determined: k{OH+[CH(OH)2]2 }=(1.10±0.04)×109 dm3 mol-1 s-1 and k[C(OH)2CH(OH)2 +O2]=(1.38±0.11)×109 dm3 mol-1 s-1. It is concluded that oxidation of glyoxal by OH in cloud water can proceed by a chain reaction involving H2O2.


References

  1. P. Warneck, The Chemistry of the Natural Atmosphere, Int. Geophys. Series, Academic Press, London, 1988 Search PubMed.
  2. V. A. Isidorov, I. G. Zenkevich and B. V. Ioffe, Atmos. Environ., 1985, 19, 1 CrossRef CAS.
  3. T. M. Olson and M. R. Hoffman, J. Phys. Chem., 1988, 92, 533 CrossRef CAS.
  4. R. A. Rasmussen, J. Air Pollut. Control Assoc., 1972, 22, 537 Search PubMed.
  5. G. V. Buxton, S. McGowan, G. A. Salmon, J. E. Williams and N. D. Wood, Atmos. Environ., 1996, 30, 2483 CrossRef CAS.
  6. Heterogeneous and Liquid Phase Processes. Laboratory Studies Related to Aerosols and Clouds, ed. P. Warneck, Springer-Verlag, Berlin, 1996 Search PubMed.
  7. A. R. Fratzke and P. J. Reilly, Int. J. Chem. Kinet., 1986, 18, 757 CrossRef CAS.
  8. A. R. Fratzke and P. J. Reilly, Int. J. Chem. Kinet., 1986, 18, 775 CrossRef CAS.
  9. J. Grimshaw, J. R. Langan and G. A. Salmon, J. Chem. Soc., Taraday Trans., 1994, 90, 75 Search PubMed.
  10. G. V. Buxton and C. R. Stuart, J. Chem. Soc., Faraday Trans., 1995, 91, 279 RSC.
  11. D. Weltwisch, E. Janata and K.-D. Asmus, J. Chem. Soc., Perkin Trans. 2, 1979, 146 RSC.
  12. J. W. T. Spinks and R. J. Woods, An Introduction to Radiation Chemistry, Wiley, New York, 2nd edn., 1976 Search PubMed.
  13. A. O. Allen, C. J. Hochanadel, J. A. Ghormley and T. W. Davis, J. Phys. Chem., 1952, 56, 575 CrossRef.
  14. S. A. Murray, PhD thesis, University of Leeds, 1997.
  15. R. H. Schuler, A. L. Hartzell and B. Behar, J. Phys. Chem., 1981, 85, 192 CrossRef CAS.
  16. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS.
  17. A. R. Curtis and W. P. Sweetenham, FACSIMILE/CHECKMAT users manual, UKAEA, 1976, AERER 12805.
  18. G. V. Buxton, R. M. Sellers and D. R. McCracken, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 1464 RSC.
  19. B. H. J. Bielski, Photochem. Photobiol., 1978, 28, 645 CrossRef CAS.
  20. Stability Constants Supplement No. 1, Spec. Publ. 25, The Chemical Society, London, 1971 Search PubMed.
  21. D. Behar, G. Czapski, J. Rabani, L. M. Dorfman and H. A. Schwarz, J. Phys. Chem., 1970, 74, 3209 CrossRef CAS.
  22. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959 Search PubMed.
  23. C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor and Francis, London, 1987 Search PubMed.
  24. Y. Zuo and J. Hoigne, Environ. Sci. Technol., 1992, 26, 1014 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.