Partial oxidation of methane over a Ni/BaTiO3 catalyst prepared by solid phase crystallization

(Note: The full text of this document is currently only available in the PDF Version )

Ryuji Shiozaki, Arnfinn G. Andersen, Takashi Hayakawa, Satoshi Hamakawa, Kunio Suzuki, Masao Shimizu and Katsuomi Takehira


Abstract

Ni/BaTiO3 catalyst has been prepared by solid phase crystallization (SPC) and used successfully for partial oxidation of CH4 into synthesis gas at 800°C. In the SPC method, Ni/BaTiO3 catalyst is obtained in situ by the reaction of starting materials with nickel species homogeneously incorporated in the structure. For the starting reagents, materials of two compositional types were employed i.e., perovskite structures BaTi1-xNixO3- δ (0⩽x⩽0.4) and stoichiometric structures, BaTiO3, Ba2TiO4 and BaTi5O11, with 0.3NiO. The starting materials were tested for oxidation of CH4 by increasing the reaction temperature from room temperature to 800°C. The catalysts showed the highest activity for synthesis gas formation around 800°C, and the highest value was obtained at a composition of x=0.3 in the former catalysts. Among the latter catalysts, the highest activity was observed over BaTiO3·0.3NiO, which was more active than BaTi0.7Ni0.3O3-δ. On the both catalysts, nickel species originally incorporated in the structure were reduced to the metallic state during the reaction. The BaTiO3·0.3NiO catalyst was further tested for 75 hours at 800°C with no observable degradation and negligible coke formation on the catalyst. Thus, Ni/BaTiO3 prepared in situ from the perovskite precursor, i.e., by the SPC method, was the most active and resistant to coke formation and deactivation during the reaction. This may be due to well dispersed and stable Ni metal particles over the perovskite, where the nickel species thermally evolve from the cations homogeneously distributed inside an inert perovskite matrix as the precursor.


References

  1. A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell and P. D. F. Vernon, Nature (London), 1990, 344, 319 CrossRef CAS.
  2. P. D. F. Vernon, M. L. H. Green, A. K. Cheetham and A. T. Ashcroft, Catal. Lett., 1990, 6, 181 CrossRef CAS.
  3. R. H. Jones, A. T. Ashcroft, D. Waller, A. K. Cheetham and J. M. Thomas, Catal. Lett., 1991, 8, 169 CrossRef CAS.
  4. D. A. Hickman and L. D. Schmidt, J. Catal., 1992, 138, 267 CrossRef CAS.
  5. D. A. Hickman, E. A. Haupfear and L. D. Schmidt, Catal. Lett., 1993, 17, 223 CAS.
  6. D. A. Hickman and L. D. Schmidt, Science, 1993, 259, 343 CrossRef CAS.
  7. V. R. Choudhary, S. D. Sansare and A. S. Mamman, Appl. Catal. A, 1992, 90, L1 CrossRef CAS.
  8. V. R. Choudhary, A. M. Rajput and B. Prabhakar, Catal. Lett., 1992, 15, 363 CrossRef CAS.
  9. V. R. Choudhary, A. M. Rajput and V. H. Rane, Catal. Lett., 1992, 16, 269 CrossRef CAS.
  10. V. R. Choudhary, A. M. Rajput and V. H. Rane, J. Phys. Chem., 1992, 96, 8686 CrossRef CAS.
  11. D. Dissanayake, M. P. Rosynek and J. H. Lunsford, J. Phys. Chem., 1993, 97, 3644 CrossRef CAS.
  12. Y.-F. Chang and H. Heinemann, Catal. Lett., 1993, 21, 215 CrossRef CAS.
  13. S. C. Tsang, J. B. Claridge and M. L. H. Green, Catal. Today, 1995, 23, 3 CrossRef CAS.
  14. D. Dissanayake, M. P. Rosynek, K. C. C. Kharas and J. H. Lunsford, J. Catal., 1991, 132, 117 CrossRef CAS.
  15. C. H. Bartholomew, Catal. Rev.-Sci. Eng., 1982, 24, 67 Search PubMed.
  16. J. B. Claridge, M. L. H. Green, S. C. Tsang, A. P. E. York, A. T. Ashcroft and P. D. Battle, Catal. Lett., 1993, 22, 299 CrossRef CAS.
  17. M. Audier, A. Oberlin, M. Oberlin, M. Coulon and L. Bonnetain, Carbon, 1981, 19, 217 CrossRef CAS.
  18. A. Slagtern and U. Olsbye, Appl. Catal. A, 1994, 110, 99 CrossRef CAS.
  19. F. Basile, L. Basini, G. Fornasari, M. Gazzano, F. Trifiro and A. Vaccari, Chem. Commun., 1996, 2435 RSC.
  20. T. Hayakawa, A. G. Andersen, M. Shimizu, K. Suzuki and K. Takehira, Catal. Lett., 1993, 22, 307 CrossRef CAS.
  21. K. Takehira, T. Hayakawa, A. G. Andersen, K. Suzuki and M. Shimizu, Catal. Today, 1995, 24, 237 CrossRef CAS.
  22. T. Hayakawa, H. Harihara, A. G. Andersen, A. P. E. York, K. Suzuki, H. Yasuda and K. Takehira, Angew. Chem., Int. Ed. Engl., 1996, 35, 192 CrossRef CAS.
  23. T. Hayakawa, H. Harihara, A. G. Andersen, K. Suzuki, H. Yasuda, T. Tsunoda, S. Hamakawa, A. P. E. York, Y. S. Yoon, M. Shimizu and K. Takehira, Appl. Catal., A, 1997, 149, 391 CrossRef CAS.
  24. M. P. Pechini, US Pat., 3 330 697, 1967 Search PubMed; M. S. G. Baythoun and F. R. Sale, J. Mater. Sci., 1982, 17, 257 Search PubMed.
  25. A. G. Andersen, T. Hayakawa, T. Tsunoda, H. Orita, M. Shimizu and K. Takehira, Catal. Lett., 1993, 18, 37 CrossRef CAS.
  26. Gmelin Handb. Anorg. Chem., 1951, 41, 228 Search PubMed.
  27. D. E. Rase and R. Roy, J. Am. Ceram. Soc., 1955, 38, 102 CAS.
  28. J. J. Ritter, R. S. Roth and J. E. Blendell, J. Am. Ceram. Soc., 1986, 69, 155 CAS.
  29. D. R. Penn, J. Electron Spectrosc. Relat. Phenom., 1976, 9, 29 CrossRef CAS.
  30. J. J. Lander, J. Am. Chem. Soc., 1951, 73, 2450 CrossRef CAS.
  31. J. J. Lander and L. A. Wooten, J. Am. Chem. Soc., 1951, 73, 2452 CrossRef CAS.
  32. H. Krischner, K. Torkar and B. O. Kolbesen, J. Solid State Chem., 1971, 3, 349 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.