Thermodynamics and kinetics of dissociation of ligand-induced dimers of vancomycin antibiotics

(Note: The full text of this document is currently only available in the PDF Version )

Deborah McPhail and Alan Cooper


Abstract

The thermodynamics of dissociation of vancomycin and ristocetin dimers in the presence and absence of specific ligands has been studied by direct microcalorimetry over a range of temperature, pH and ionic strength conditions in H2O and D2O. Dimerization of these antibiotics is exothermic with large temperature dependence (ΔCp) and consequent entropy–enthalpy compensation effects that may be consistent with solvation changes associated with burial of non-polar surfaces during macromolecular association. For vancomycin, no significant ionic strength effects are observed, so non-specific electrostatic contributions are probably discounted, but pH and buffer effects on the thermodynamic parameters are consistent with hydrogen ion uptake and pK shift in the dimerization process. Vancomycin dimerization is significantly enhanced in the presence ofspecifically binding ligands: acetate, N-acetyl-D-Ala, and Nα,Nε-diacetyl-L ys-D-Ala-D-Ala, in increasing order of effectiveness.The dipeptide ligand N-acetyl-D-Ala-D-Ala promotes higher oligomerization and crystallization of the complex. Ristocetin, in contrast, displays no such ligand effects; it shows a slight reduction in dimerization in the presence of strongly binding Nα,Nε-diacetyl-L ys-D-Ala-D-Ala. This difference may reflect the need for flexibility in the antibiotic structure to allow ligand-induced aggregation. Eremomycin dimerizes strongly even in the absence of ligand. Dissociation of the vancomycin–Nα,N ε-diacetyl-Lys-D-Ala-D-Ala dimer complex is slow (kdiss ca. 0.005 s-1) and kinetics can be measured by conventional UV difference techniques.


References

  1. M. H. McCormick, W. M. Stark, G. E. Pittenger, R. C. Pittenger and J. M. McGuire, Antibiotics Annual, 1955–1956, p. 606 Search PubMed.
  2. C. T. Walsh, Science, 1993, 261, 308 CAS.
  3. P. Groves, M. S. Searle, J. P. Mackay and D. H. Williams, Structure, 1994, 2, 747 CrossRef CAS.
  4. M. Nieto and H. R. Perkins, Biochem. J, 1971, 123, 773 CAS.
  5. M. Nieto and H. R. Perkins, Biochem. J, 1971, 123, 789 CAS.
  6. J. C. J. Barna and D. H. Williams, Ann. Rev. Microbiol., 1984, 38, 339 Search PubMed.
  7. G. D. Wright and C. T. Walsh, Acc. Chem. Res., 1992, 25, 468 CrossRef CAS.
  8. A. Cooper and K. McAuley-Hecht, Philos. Trans. R. Soc. London A, 1993, 345, 23 Search PubMed.
  9. J. P. Waltho and D. H. Williams, J. Am. Chem. Soc., 1989, 111, 2475 CrossRef CAS.
  10. U. Gerhard, J. P. Mackay, R. A. Maplestone and D. H. Williams, J. Am. Chem. Soc., 1993, 115, 232 CrossRef CAS.
  11. J. P. Mackay, U. Gerhard, D. A. Beauregard, M. S. Westwell, M. S. Searle and D. H. Williams, J. Am. Chem. Soc., 1994, 116, 4581 CrossRef CAS.
  12. M. Schäfer, T. R. Schneider and G. M. Sheldrick, Structure, 1996, 4, 1509 CrossRef CAS.
  13. A. K. Covington, M. Paabo, R. A. Robinson and R. G. Bates, Anal. Chem., 1968, 40, 700 CrossRef CAS.
  14. T. Wiseman, S. Williston, J. F. Brandts and L. N. Lin, Anal. Biochem., 1989, 179, 131 CrossRef CAS.
  15. A. Cooper and C. M. Johnson, in Methods in Molecular Biology, ed. C. Jones, B. Mulloy and A. H. Thomas, Humana Press, Totowa, NJ, 1994, 22, 137 Search PubMed.
  16. P. R. Stoesser and S. J. Gill, J. Phys. Chem., 1967, 71, 564 CrossRef CAS.
  17. G. Weber, J. Phys. Chem., 1993, 97, 7108 CrossRef CAS.
  18. G. Weber, J. Phys. Chem., 1995, 99, 1052 CrossRef CAS.
  19. R. S. Spolar and M. T. Record, Science, 1994, 263, 777 CAS.
  20. A. Cooper, Proc. Natl. Acad. Sci. USA, 1976, 73, 2740 CAS.
  21. A. Cooper, Prog. Biophys. Mol. Biol., 1984, 44, 181 CrossRef CAS.
  22. J. M. Sturtevant, Proc. Natl. Acad. Sci. USA, 1977, 74, 2236 CAS.
  23. D. H. Williams, M. S. Searle, J. P. Mackay, U. Gerhard and R. A. Maplestone, Proc. Natl. Acad. Sci. USA, 1993, 99, 1172.
  24. D. Xu, S. L. Lin and R. Nussinov, J. Mol. Biol., 1997, 265, 68 CrossRef CAS.
  25. P. H. Popieniek and R. F. Pratt, J. Am. Chem. Soc., 1991, 113, 2264 CrossRef CAS.
  26. D. H. Williams, M. J. Stone, R. J. Mortishire-Smith and P. R. Hauck, Biochem. Pharmacol., 1990, 40, 27 CrossRef CAS.
  27. J. M. Sturtevant, in Experimental Thermochemistry, ed. H. A. Skinner, Interscience, New York, 1962, vol. II, p. 427 Search PubMed.
  28. A. Cooper and C. A. Converse, Biochemistry, 1976, 15, 2970 CrossRef CAS.
  29. P. Groves, M. S. Searle, I. Chicarelli-Robinson and D. H. Williams, J. Chem. Soc., Perkin Trans. 1, 1994, 659 RSC.
  30. D. H. Williams, M. S. Searle, P. Groves, J. P. Mackay, M. S. Westwell, D. A. Beauregard and M. F. Cristofaro, Pure Appl. Chem., 1994, 66, 1975 CAS.
  31. M. P. Williamson, D. H. Williams and S. J. Hammond, Tetrahedron, 1984, 40, 569 CrossRef CAS.
  32. R. Lumry and S. Rajender, Biopolymers, 1970, 9, 1125 CrossRef CAS.
  33. E. Grunwald and C. Steel, J. Am. Chem. Soc., 1995, 117, 5687 CrossRef CAS.
  34. J. D. Dunitz, Chem. Biol., 1995, 2, 709 CrossRef CAS.
  35. J. J. Christensen, L. D. Hansen and R. M. Izatt, Handbook of Proton Ionization Heats, Wiley, New York, 1976 Search PubMed.
  36. A. Cooper and C. M. Johnson, in Methods in Molecular Biology, ed. C. Jones, B. Mulloy and A. H. Thomas, Humana Press, Totowa, NJ, 1994, 22, 109 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.