Fullerenes containing fused triples of pentagonal rings

(Note: The full text of this document is currently only available in the PDF Version )

P. W. Fowler and J. E. Cremona


Abstract

A geometrical construction is described that generates all fullerene isomers Cn in which the twelve pentagonal faces are arranged in four separate fully fused triples. When such an isolated-pentagon-triple (IPT) fullerene achieves its maximal symmetry, it may belong to one of only five point groups (D2, D2h, D2d, T, Td). At large n, the class of IPT fullerenes includes some (chiral) isomers without face spirals. A systematic search shows that although the smallest unspirallable IPT fullerenes are tetrahedral (n=380, 404, T symmetry), high symmetry is not a prerequisite: the first D2 IPT fullerene without a spiral occurs at n=424. In the range of IPT fullerenes with up to 1000 atoms, D2 outnumber T counter-examples to the spiral conjecture by a factor of more than 10, but unspirallable fullerenes remain only a few percent of the IPT class as a whole.


References

  1. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995 Search PubMed.
  2. H. W. Kroto, Nature (London), 1987, 329, 529 CrossRef CAS.
  3. T. G. Schmalz, W. A. Seitz, D. J. Klein and G. E. Hite, J. Am. Chem. Soc., 1988, 110, 1113 CrossRef CAS.
  4. E. E. B. Campbell, P. W. Fowler, D. Mitchell and F. Zerbetto, Chem. Phys. Lett., 1996, 250, 544 CrossRef CAS.
  5. A. J. Stone and D. J. Wales, Chem. Phys. Lett., 1986, 128, 501 CrossRef CAS.
  6. P. W. Fowler, D. E. Manolopoulos and R. Ryan, J. Chem. Soc., Chem. Commun., 1992, 408 RSC.
  7. K. Raghavachari, Chem. Phys. Lett., 1992, 190, 397 CrossRef CAS.
  8. D. E. Manolopoulos, J. C. May and S. E. Down, Chem. Phys. Lett., 1991, 181, 105 CrossRef CAS.
  9. G. Brinkmann and A. W. M. Dress, J. Algorithms, in press Search PubMed.
  10. H. S. M. Coxeter, Virus Macromolecules and Geodesic Domes, in: A Spectrum of Mathematics, ed. J. C. Butcher, Oxford University Press/Auckland University Press, Oxford/Auckland, 1971, p. 98 Search PubMed.
  11. P. W. Fowler, J. Cremona and J. I. Steer, Theor. Chim. Acta, 1988, 73, 1 CrossRef CAS.
  12. P. W. Fowler and J. I. Steer, J. Chem. Soc., Chem. Commun., 1987, 1403 RSC.
  13. P. W. Fowler, J. Chem. Soc., Faraday Trans., 1990, 86, 2073 RSC.
  14. P. W. Fowler, Chem. Phys. Lett., 1986, 131, 444 CrossRef CAS.
  15. M. Yoshida, M. Fujita, P. W. Fowler and E. C. Kirby, J. Chem. Soc., Faraday Trans., 1997, 93, 1037 RSC.
  16. D. E. Manolopoulos and P. W. Fowler, Chem. Phys. Lett., 1993, 204, 1 CrossRef CAS.
  17. P. W. Fowler, J. Chem. Soc., Faraday Trans., 1997, 93, 1 RSC.
  18. M. Goldberg, Tôhoku Math. J., 1934, 40, 226 Search PubMed.
  19. M. Goldberg, Tôhoku Math. J., 1937, 43, 104 Search PubMed.
  20. P. W. Fowler and J. P. B. Sandall, J. Chem. Res. (S), 1995, 68 Search PubMed.
  21. H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 1993, 214, 353 CrossRef CAS.
  22. D. E. Manolopoulos and P. W. Fowler, J. Chem. Phys., 1992, 96, 7603 CrossRef CAS.
  23. P. W. Fowler, D. E. Manolopoulos, D. B. Redmond and R. Ryan, Chem. Phys. Lett., 1993, 202, 371 CrossRef CAS.
  24. S. Fajtlowicz, Written On The Wall: A list of conjectures made by the GRAFFITI program. The list is available from its author at siemion@math.uh.edu, or at Dept. of Mathematics, University of Houston, Houston TX 77204, USA Search PubMed.
  25. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Springer, 1993, section 2.4 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.