Mean spherical approximation based perturbation theory equation of state for Stockmayer fluids

(Note: The full text of this document is currently only available in the PDF Version )

Gergely Kronome, János Liszi and István Szalai


Abstract

We propose a new mean spherical approximation (MSA) based perturbation theory (PT) equation of state for dipolar fluids, which can be modelled by the Stockmayer potential. Our equation of state contains a Lennard-Jones equation of state and an excess term, which takes into account the contribution of the dipole–dipole interaction. The prediction of the latter term is based on the analytical solution of the MSA for a dipolar hard sphere fluid. Pressure data calculated from our MSA based PT equation of state at different isotherms and reduced dipole moments [µ*=µ/√(σ3ε), where µ is the dipole moment and σ, ε are the parameters of the Lennard-Jones potential] are compared with Monte Carlo (MC) simulation and Gubbins–Pople–Stell perturbation theory results. At low density both theories give good agreement with MC simulation results. At higher densities the MSA based PT gives better agreement with the simulation data. The vapour–liquid coexistence curves are predicted well for µ*2<2 reduced dipole moments by both PTs, but for higher µ* values our MSA based PT results are in better agreement with the simulation data. The equilibrium pressure and enthalpy of vaporisation data predicted from the MSA based PT are in better agreement with the appropriate simulation data than those of the Gubbins–Pople–Stell PT. A comparison between the µ* dependence of the theoretical and MC simulation critical parameters is also made, where, with the exception of the critical density, the MSA based PT data are in better agreement with the MC ones.


References

  1. J.-M. Caillol, J. Chem. Phys., 1993, 98, 9835 CrossRef CAS.
  2. M. E. Van Leeuwen and B. Smit, Phys. Rev. Lett., 1993, 71, 3991 CrossRef CAS.
  3. J. J. Weis and D. Levesque, Phys. Rev. Lett., 1993, 71, 2729 CrossRef CAS.
  4. R. P. Sear, Phys. Rev. Lett., 1996, 76, 2310 CrossRef CAS.
  5. R. van Roij, Phys. Rev. Lett., 1996, 76, 3348 CrossRef CAS.
  6. S. C. McGrother and G. Jackson, Phys. Rev. Lett., 1996, 76, 4183 CrossRef CAS.
  7. G. Stell, J. C. Rasaiah and H. Narang, Mol. Phys., 1972, 23, 393 CAS.
  8. G. Stell, J. C. Rasaiah and H. Narang, Mol. Phys., 1974, 27, 1393 CAS.
  9. I. R. McDonald, J. Phys. C: Solid State Phys., 1974, 7, 1225 CrossRef CAS.
  10. G. N. Patey, Mol. Phys., 1977, 34, 427 CAS.
  11. G. Stell, G. N. Patey and J. S. Høye, Adv. Chem. Phys., 1981, 48, 183 CAS.
  12. L. L. Lee, P. H. Fries and G. N. Patey, Mol. Phys., 1985, 55, 751 CAS.
  13. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Fundamentals, Clarendon Press, Oxford, 1984, vol. 1 Search PubMed.
  14. F. J. Vesely, Chem. Phys. Lett., 1978, 56, 390 CrossRef CAS.
  15. E. L. Pollock, B. J. Alder and G. N. Patey, Physica A, 1981, 108, 14 CrossRef.
  16. M. J. Stevens and G. S. Grest, Phys. Rev. E, 1995, 51, 5976 CrossRef CAS.
  17. D. Boda, J. Liszi and I. Szalai, Mol. Phys., 1995, 85, 429 CAS.
  18. D. Boda, J. Winkelmann, J. Liszi and I. Szalai, Mol. Phys., 1996, 87, 601 CrossRef CAS.
  19. B. Smit, C. P. Williams and E. M. Hendriks, Mol. Phys., 1989, 68, 765 CAS.
  20. M. E. Van Leeuwen, B. Smit and E. M. Hendriks, Mol. Phys., 1993, 78, 271 CAS.
  21. M. E. Van Leeuwen, Mol. Phys., 1994, 82, 383 CAS.
  22. B. Garzón, S. Lago and C. Vega, Chem. Phys. Lett., 1994, 231, 366 CrossRef CAS.
  23. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  24. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys., 1988, 63, 527 CAS.
  25. J. J. Nicolas, K. E. Gubbins, W. B. Streett and D. J. Tildesley, Mol. Phys., 1979, 37, 1429 CAS.
  26. J. K. Johnson, J. A. Zollweg and K. E. Gubbins, Mol. Phys., 1993, 78, 591 CAS.
  27. K. Aim, J. Kolafa, I. Nezbeda and H. L. Vörtler, Fluid Phase Equilibr., 1993, 83, 15 Search PubMed.
  28. M. Mecke, A. Müller, J. Winkelmann, J. Vrabec, J. Fischer, R. Span and W. Wagner, Int. J. Thermophys., 1996, 17, 391 CAS.
  29. C. Kriebel, A. Müller, J. Winkelmann and J. Fischer, Fluid Phase Equilibr., 1996, 119, 67 Search PubMed.
  30. M. S. Wertheim, J. Chem. Phys., 1971, 55, 4291 CrossRef CAS.
  31. G. S. Rushbrooke, G. Stell and J. S. Høye, Mol. Phys., 1973, 26, 1199 CAS.
  32. J. W. H. Sutherland, G. Nienhuis and J. M. Deutch, Mol. Phys., 1974, 27, 721 CAS.
  33. J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys., 1971, 54, 5237 CrossRef CAS.
  34. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 1986 Search PubMed.
  35. J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1 CrossRef.
  36. F. Carnahan and E. Starling, J. Chem. Phys., 1969, 53, 471.
  37. J. A. Barker and D. Henderson, Rev. Mod. Phys., 1972, 48, 587 CrossRef.
  38. L. Verlet and J. J. Weis, Phys. Rev. A, 1972, 5, 939 CrossRef.
  39. D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976 Search PubMed.
  40. D. Boda, T. Lukács, J. Liszi and I. Szalai, Fluid Phase Equilibr., 1996, 119, 1 Search PubMed.
  41. S. A. Adelman and J. M. Deutch, J. Chem. Phys., 1973, 59, 3971 CrossRef CAS.
  42. D. Boda, I. Szalai and J. Liszi, J. Chem. Soc., Faraday Trans., 1995, 91, 889 RSC.
  43. D. Boda, B. Kalmár, J. Liszi and I. Szalai, J. Chem. Soc., Faraday Trans., 1996, 92, 2709 RSC.
  44. G. Kronome and I. Szalai, J. Chem. Soc., Faraday Trans., to be published Search PubMed.
  45. S. Goldman, Mol. Phys., 1990, 71, 491.
Click here to see how this site uses Cookies. View our privacy policy here.