Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites

(Note: The full text of this document is currently only available in the PDF Version )

Satoshi Uchida, Yositaka Yamamoto, Yoshinobu Fujishiro, Akira Watanabe, Osamu Ito and Tsugio Sato


Abstract

Titanium oxide and platinum have been intercalated into H2Ti4O9 and H4Nb6O17 by the successive reactions of H2Ti4O9 and H4Nb6O17 with [Pt(NH3)4]Cl2, n-C3H7NH2 and acidic TiO2 colloid solutions followed by UV light irradiation. The thicknesses of titanium oxide and platinum were less than 0.7 nm. The band gap energy of the titanium oxide incorporated was less than 3.4 eV. The rate constants for the charge injection from excited TiO2 into the conduction band of H2Ti4O9 and H4Nb6O17 were determined to be 0.11×109 and 0.12×109 s-1, respectively, by measuring the TiO2 emission lifetimes in TiO2 incorporatednanocomposites. H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2 ,Pt) nanocomposites (intercalated with both TiO2 and Pt) werecapable of water cleavage into hydrogen and oxygen without a hole scavenger, at 0.088–0.104 mmol h-1, following irradiation from a 450 W Hg lamp, although no noticeable gas was evolved in the presence of H2Ti4O9/TiO2, H4Nb6O17/TiO2, H2Ti4O9/Pt, H4Nb6O17/Pt and unsupported TiO2/Pt. The hydrogen and oxygen evolution was linear with time and the niobate system was fairly efficient.


References

  1. S. Yamanaka, T. Doi, S. Sako and M. Hattori, Mater. Res. Bull., 1984, 19, 161 CrossRef CAS.
  2. O. Enea and A. J. Bard, J. Phys. Chem., 1986, 90, 301 CrossRef CAS.
  3. H. Miyoshi and H. Yoneyama, J. Chem. Soc., Faraday Trans. 1., 1989, 85, 1873 RSC.
  4. H. Yoneyama, S. Haga and S. Yamanaka, J. Phys. Chem., 1989, 93, 4833 CrossRef CAS.
  5. H. Miyoshi, H. Mori and H. Yoneyama, Langmuir, 1991, 7, 503 CrossRef CAS.
  6. T. Sato, H. Okuyama, T. Endo and M. Shimada, React. Solids, 1990, 8, 63 CrossRef CAS.
  7. T. Sato, K. Masaki, T. Yoshioka and A. Okuwaki, J. Chem. Technol. Biotechnol., 1993, 58, 315 CAS.
  8. T. Sato, Y. Yamamoto, Y. Fujishiro and S. Uchida, J. Chem. Soc., Faraday Trans., 1996, 92, 5089 RSC.
  9. S. Yamanaka, T. Nishihara and M. Hattori, Mater. Chem. Phys., 1987, 17, 87 CrossRef CAS.
  10. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun., 1986, 356 RSC.
  11. K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun., 1986, 1076 RSC.
  12. M. Shibata, A. Kudo, A. Tanaka, K. Domen, K. Maruya and T. Onishi, Chem. Lett., 1987, 1017 CAS.
  13. L. Brus, J. Chem. Phys., 1984, 80, 4403 CrossRef CAS.
  14. H. Weller, H. M. Schmit, U. Koch, A. Foitik, S. Baral, A. Henglein, W. Kunath, K. Weiss and E. Diekmann, Chem. Phys. Lett., 1990, 41, 477.
  15. T. Bakas, A. Moukarika, V. Papaefthymiou and A. Ladavos, Clays Clay Miner., 1994, 42, 634 CAS.
  16. H. Mori, H. Miyoshi, K. Takeda, H. Yoneyama and H. Fujita, J. Mater. Sci., 1992, 27, 3197 CAS.
  17. K. R. Gopidas, M. Bohrqyez and P. V. Kamat, J. Phys. Chem., 1990, 94, 6435 CrossRef.
  18. D. R. James, Y. S. Liu, P. De Mayo and W. R. Ware, Chem. Phys. Lett., 1985, 120, 460 CrossRef CAS.
  19. I. Bedja, S. Hotchandani and P. V. Kamat, J. Phys. Chem., 1994, 98, 4133 CrossRef CAS.
  20. W. E. Ford and M. A. Rodgers, J. Phys. Chem., 1994, 98, 3822 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.