Anodic sulfide films on HgTe and Cd0.24Hg0.76Te studied by in-situ ellipsometry

(Note: The full text of this document is currently only available in the PDF Version )

L. E. A. Berlouis, P. V. E. Elfick and H. Tarry


Abstract

The growth of anodic sulfide films on HgTe and CdxHg1-xTe (CMT) from aqueous sulfide solution is examined using in-situ ellipsometry. The dominating feature at low overpotentials for the HgTe is the dissolution of the substrate whereas for CMT it is the CdS film formation. The HgS film that eventually forms on the HgTe substrate at higher overpotentials maintains the ccp «111» orientation of the substrate and can be regarded as epitaxial. Electrochemical passivation of the CMT and HgTe surfaces is attributed to a change in the HgS surface film structure from ccp to hcp, triggered by the electric field across the film. The current oscillations that follow the passivation peak are due to the competing reactions of electrochemical formation and chemical dissolution of the β-HgS layer. Films grown to potentials beyond the passivation potential on the HgTe surface lose the epitaxial characteristic and smaller crystallites result, with mixed hcp and ccp orientation for the HgS, as observed from XRD measurements.


References

  1. C. T. Elliot, in Properties of Narrow Gap Cadmiumbased Compounds, ed. P. Capper, INSPEC, London, 1994, p. 311 Search PubMed.
  2. Y. Nemirovsky, S. Margalith and I. Kidron, Appl. Phys. Lett., 1980, 36, 460 CrossRef.
  3. G. D. Davis, S. P. Buchner and N. E. Byer, J. Vac. Sci. Technol. A, 1983, 1, 670 CrossRef.
  4. B. K. Janousek, R. C. Carscallen and P. A. Bertrand, J. Vac. Sci. Technol. A, 1983, 1, 1723 CrossRef CAS.
  5. P. C. Catagnus and C. T. Baker, US Pat. 3 977 018, 1976.
  6. B. K. Janousek and R. C. Carscallen, J. Appl. Phys., 1982, 53, 1720 CrossRef CAS.
  7. C. M. Stahle, C. R. Helms, H. F. Schaake, R. L. Strong, A. Simmons, J. B. Pallix and C. H. Becker, J. Vac. Sci. Technol. A, 1989, 7, 474 CrossRef CAS.
  8. Y. Nemirovsy and L. Burstein, Appl. Phys. Lett., 1984, 44, 443 CrossRef.
  9. Y. Nemirosvy, L. Burstein and I. Kidron, J. Appl. Phys., 1985, 58, 336.
  10. J. P. Ziegler, J. M. Lindquist and J. C. Hemminger, J. Vac. Sci. Technol. A, 1989, 7, 469 CrossRef CAS.
  11. R. L. Strong, J. D. Luttmer, D. D. Little, T. H. Tehrani and C. R. Helms, J. Vac. Sci. Technol. A, 1987, 5, 3207 CrossRef CAS.
  12. T. Ipposhi, K. Takita, K. Murakami, M. Matsuda, H. Kudo and S. Seki, J. Appl. Phys., 1988, 63, 132 CrossRef CAS.
  13. C. Wei, K. K. Mishra and K. Rajeshwar, Chem. Mater., 1992, 4, 77 CrossRef CAS.
  14. L. E. A. Berlouis, L. M. Peter, R. Greef and M. G. Astles, J. Cryst. Growth, 1992, 117, 918 CrossRef CAS.
  15. Y. Nemirovsky, R. Adar, A. Korenfield and I. Kidron, J. Vac. Sci. Technol. A, 1986, 4, 1986 CrossRef CAS.
  16. P. V. Elfick, L. E. A. Berlouis, S. M. MacDonald, S. Affrossman, P. Rocabois and H. Tarry, J. Phys. Chem., 1995, 99, 15129 CrossRef CAS.
  17. J. Tunnicliffe, S. J. C. Irvine, O. D. Dosser and J. B. Mullin, J. Cryst. Growth, 1984, 68, 245 CrossRef CAS.
  18. M. G. Astles, in Properties of Narrow Gap Cadmium-based Compounds, ed. P. Capper, INSPEC, London, 1994, p. 13 Search PubMed.
  19. L. E. A. Berlouis, D. J. Schiffrin, L. M. Peter, M. G. Astles and N. T. Gordon, Br. Pat. 2 261 677 B, 1996.
  20. P. M. Raccah, J. W. Garland, Z. Zhang, U. Lee, S. Ugur, S. Mioc, S. K. Ghandi and I. Bhat, J. Appl. Phys., 1981, 57, 2014 CrossRef.
  21. L. E. A. Berlouis, L. M. Peter, D. J. Diskett, A. J. Avery, M. G. Astles, J. Giess and N. T. Gordon, J. Cryst. Growth, 1990, 101, 153 CrossRef CAS.
  22. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North Holland, Amsterdam, 1979 Search PubMed.
  23. L. E. A. Berlouis, L. M. Peter and P. A. H. Fennell, J. Appl. Phys., 1990, 68, 2331 CrossRef CAS.
  24. M. Seelman-Eggebert, PhD Thesis, University of Tubingen, Germany, 1986.
  25. M. Seelman-Eggebert, G. Brandt and H. J. Richter, J. Vac. Sci. Technol. A, 1984, 2, 11 CrossRef.
  26. G. D. Davis, T. S. Sun, S. P. Buchner and N. E. Byer, J. Vac. Sci. Technol. A, 1981, 19, 472 CrossRef CAS.
  27. C. M. Stahle, C. R. Helms, H. F. Schaake, R. L. Strong, A. Simmons, J. B. Pallix and C. H. Becker, J. Vac. Sci. Technol. A, 1989, 7, 474 CrossRef CAS.
  28. J. S. Ahearn, G. D. Davis and N. E. Byer, J. Vac. Sci. Technol. B, 1982, 5, 756.
  29. R. D. Armstrong, D. F. Porter and H. R. Thirsk, J. Phys. Chem., 1968, 72, 2300 CrossRef CAS.
  30. D. R. Canterford and A. S. Buchanan, J. Electroanal. Chem., 1973, 44, 291 CrossRef CAS.
  31. V. Marcu and R. Tenne, J. Phys. Chem., 1988, 92, 7089 CrossRef CAS.
  32. V. Marcu and H. H. Strehblow, Electrochim. Acta, 1991, 36, 869 CrossRef CAS.
  33. A. Hickling and D. J. G. Ives, Electrochim. Acta, 1975, 20, 63 CrossRef CAS.
  34. R. D. Armstrong, D. E. Porter and H. R. Thirsk, J. Electroanal. Chem., 1967, 14, 17 CrossRef CAS.
  35. S. Licht, F. Forouzan and K. Longo, Anal. Chem., 1990, 62, 1356 CAS.
  36. S. Licht, K. Longo, D. Peramunage and F. Forouzan, J. Electroanal. Chem., 1991, 318, 111 CrossRef CAS.
  37. D. Peramunage, F. Forouzan and S. Licht, Anal. Chem., 1994, 66, 378 CrossRef CAS.
  38. R. Greef and C. F. W. Norman, J. Electrochem. Soc., 1985, 132, 2362 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.