Photoinduced adduct formation between Orange II and [Fe3+(aq)] or Fe(ox)33-–H2O2 Photocatalytic degradation and laser spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

V. Nadtochenko and J. Kiwi


Abstract

The mechanism of the photo-Fenton catalytic degradation of an azo-dye has been studied by a laser photolysis technique. The effect of added oxalate on the activity of the Fenton reagent (Fe2+/3+–H2O2) is reported for dark and light reactions during the degradation of Orange II via steady-state and pulsed laser photolysis. Different LMCT of the excited states of the Fe(ox)33- or the (FeIII···Orange II) complexes are the active species during dye decoloration and/or degradation. The kinetics of the LMCT states reacting with H2O2 on a timescale of ns to ms were studied. Based on a radical theory of Fenton catalysis and direct evidence obtained from laser spectroscopy, it was possible to demonstrate the formation of ·OH adducts for Orange II and other organic compounds. The formation of these adducts in fast reactions was followed by optical methods and appears to be the initial degradation step leading to the observed oxidation of the three organic compounds considered. An interpretation of the fast kinetics in relation to the parameters affecting the degradation and insight into the reactions taking place in the short-time domain are provided.


References

  1. J. Kiwi and C. Pulgarin, Appl. Cat. Environ., 1994, 3, 335 Search PubMed.
  2. Ch. Walling, Acc. Chem. Res., 1975, 8, 125 CrossRef CAS.
  3. G. Ruppert, R. Bauer and G. Heisler, J. Photochem. Photobiol. A, 1993, 73, 75 CrossRef CAS.
  4. M. Halmann, J. Photochem. Photobiol. A, 1992, 66, 215 CrossRef CAS.
  5. G. Helz, R. Zepp and D. Crosby, Aquatic and Surface Chemistry, Lewis, Boca Raton, FL, 1994 Search PubMed.
  6. A. Safarzadeh-Amiri, J. R. Bolton and R. Cater, J. Adv. Oxidation Technol., 1996, 1, 18 Search PubMed.
  7. J. Pignatello, Environ. Sci. Technol., 1992, 26, 944 CAS.
  8. J. Bandara, J. Kiwi, C. Pulgarin, G.-M. Pajonk and P. Albers, Environ. Sci. Technol., 1996, 30, 1261 CrossRef CAS.
  9. C. Pulgarin, P. Peringer, P. Albers and J. Kiwi, J. Mol. Catal. A., 1995, 95, 61 CrossRef CAS.
  10. C. Pulgarin and J. Kiwi, J. Chimia, 1996, 50, 50 Search PubMed.
  11. M. Hoffmann, M. Martin, W. Choi and D. Bahnemann, Chem. Rev., 1995, 95, 69 CrossRef CAS.
  12. J. Prousek, Chem. Lys., 1995, 89, 11 Search PubMed.
  13. J. Kochany and E. Lipcyinska-Kochany, Chemosphere, 1992, 25, 1769 CrossRef CAS.
  14. J. Kiwi, C. Pulgarin and P. Peringer, Appl. Catal. Environ., 1993, 3, 85 Search PubMed.
  15. M. Halmann, Photodegradation of Pollutants, CRC Press, Boca Raton, FL, 1996 Search PubMed.
  16. G. Heller and J. Langan, J. Chem. Soc., Perkin Trans., 2, 1981, 341 RSC.
  17. V. Nadtochenko and J. Kiwi, J. Photochem, Photobiol. A, 1996, 99, 145 CrossRef CAS.
  18. H. Benesi and H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703 CrossRef CAS.
  19. G. Buxton, G. Greenstock, Ph. Helman and B. Ross, J. Phys. Chem. Ref. Data 1, 1988, 17, 513 Search PubMed.
  20. J. Edwards and C. Curci, in Catalytic Oxidation with H2O2 as an Oxidant, ed. S. Strukul, Kluwer, Dordrecht, 1992, p. 97 Search PubMed.
  21. K. Vinodgopal and P. V. Kamat, J. Photochem. Photobiol. A, 1994, 10, 1767 CAS.
  22. W. Wedjenew, W. Gurwitsch, W. Kondarthew and A. Medwedew, Energies of Chemical Bonding, Ionization Potentials and Electron Affinities, VEB, Leipzig, 1971 Search PubMed.
  23. K. Vinodgopal, D. Wynkoop and P. V. Kamat, Environ. Sci. Technol., 1996, 30, 1660 CrossRef CAS.
  24. Y. Zuo and J. Hoigné, Environ. Sci. Technol., 1992, 26, 1104.
Click here to see how this site uses Cookies. View our privacy policy here.