Structural and spectroscopic investigations of 1,1,3,3-tetrakis(alkylamino)allyl cations, methylene-bis(N,N′-dialkylformamidinium) dications and related formamidine derivatives

(Note: The full text of this document is currently only available in the PDF Version )

George R. Clark, Clifton E. F. Rickard, Peter W. J. Surman and Michael J. Taylor


Abstract

Treatment of pentachlorocyclopropane under basic conditions with either of the primary amines, PriNH2 or ButNH2, displaces all the chlorine atoms and yields methylene-bis(N,N′-dialkylformamidine), CH2{C(NR)NHR}2 (R=Pri or But). A facile protonation converts the molecule into the 1,1,3,3-tetrakis(alkylamino)allyl cation, [CH{C(NHR)2}2]+ to which a further proton can be added to generate the corresponding methylene-bis(N,N′-dialkylformamidinium) ion. Barriers to rotation about the partial CN double bonds of these dications, [CH2{C(NHR)2}2]2 (R=Pri or But), of 80 and 74 kJ mol-1, respectively, are deduced from variable temperature NMR data. 1H and 13C NMR studies of the kindred methylene-bis(formamidine) molecules show evidence of tautomerism as well as conformational changes in solution. Hydrolysis of methylene-bis(N,N′-di-tert-butylfor mamidine) gives N,N′-di-tert-butylformamidine. The crystallographically determined structure of N,N′-di-tert-butylformamidinium chloride, [CH(NHBut)2]Cl, is compared with other members of this series.


References

  1. M. J. Taylor, P. W. J. Surman and G. R. Clark, J. Chem. Soc., Chem. Commun., 1994, 2517 RSC.
  2. G. R. Clark, P. W. J. Surman and M. J. Taylor, J. Chem. Soc., Faraday Trans., 1995, 91, 1523 RSC.
  3. R. J. Grout, in The Chemistry of Amidines and Imidates, ed. S. Patai and Z. Rappoport, John Wiley and Sons, Chichester, 1975, vol. 1, p. 255 Search PubMed.
  4. (a) J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219 CrossRef CAS; (b) F. A. Cotton, J. H. Matonic and C. A. Murillo, Inorg. Chem., 1996, 35, 498 CrossRef CAS; (c) J. Barker, N. C. Blacker, P. R. Phillips, N. W. Alcock, W. Errington and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1996, 431 RSC.
  5. (a) Z. Janousek and H. G. Viehe, Angew. Chem., 1971, 83, 615; (b) Z. Yoshida, H. Konishi, Y. Tawara, K. Nishikawa and H. Ogoshi, Tetrahedron Lett., 1973, 2619 CrossRef CAS.
  6. T. M. Krygowski and K. Wozniak, in The Chemistry of Amidines and Imidates, ed. S. Patai and Z. Rappoport, John Wiley and Sons, Chichester, 1991, vol. 2, p. 101 Search PubMed.
  7. C. L. Perrin, in The Chemistry of Amidines and Imidates, ed. S. Patai and Z. Rappoport, John Wiley and Sons, Chichester, 1991, vol. 2, p. 147 Search PubMed.
  8. A. Krebs and J. Breckwoldt, Tetrahedron Lett., 1969, 3797 CrossRef CAS.
  9. A. L. Greet, Anal. Chem., 1970, 42, 679 CrossRef CAS.
  10. J. Sandström, Dynamic NMR Spectroscopy, Academic Press, London, 1982 Search PubMed.
  11. M. Oki, Applications of Dynamic NMR Spectroscopy to Organic Chemistry, Verlag Chemie, Weinheim, 1985 Search PubMed.
  12. G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, University of Göttingen, 1986.
  13. G. M. Sheldrick, SHELXL-92, Program for Crystal Structure Refinement, University of Göttingen, 1992.
Click here to see how this site uses Cookies. View our privacy policy here.