Acid strength of tetrafluoroboric acid The hydronium ion as a superacid and the inapplicability of water as an indicator of acid strength

(Note: The full text of this document is currently only available in the PDF Version )

Dan Fărcasiu and Dan Hâncu


Abstract

The Hammett acidity function, H0, of 50.7% to 79.2% aqueous fluoroboric acid has been determined by 13C NMR spectroscopy (the Δδ0 method) with mesityl oxide as indicator. At all concentrations, the H0 values are more negative than those of sulfuric or trifluoromethanesulfonic acid solutions, increasingly so at higher concentrations. The acid strengths measured represent the acidities of various clusters of hydronium ions and water, ion-paired with fluoroborate anions; in such systems the acid strength is also dependent upon the anion. At 79.2% concentration (0.28 mol excess water per mol hydronium ions) the solution is as strong as, or slightly stronger than, pure sulfuric acid, meaning that mixtures with less excess of water are superacidic. The hydronium ion (as fluoroborate) being a stronger acid than 100% sulfuric acid means that water dissolved in hydronium fluoroborate is a weaker base than the hydrogen sulfate ion in sulfuric acid. At the same concentration (wt.%), ‘fluoroboric acid’ is stronger than perchloric acid, but the two are equally strong when concentration is measured in molar ratios water:acid, meaning that perchloric acid is also fully converted in concentrated solutions to hydronium perchlorate. In acetic acid solution, hydronium perchlorate and fluoroborate are again equally strong, as expected, but they are significantly weaker than phosphotungstic acid, even though the hydron-donating species should be H3O+·xH2O, in all cases. The acid strength of H3O+ is thus strongly dependent upon the nature of the anion, which means that the basicity of water is strongly dependent upon the acid. Water is, therefore, not useful as a probe base for estimating acid strengths.


References

  1. (a) D. A. McCaulay, B. H. Shoemaker and A. P. Lien, Ind. Eng. Chem., 1950, 43, 2103 Search PubMed; (b) M. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc., 1953, 75, 577 CrossRef CAS.
  2. C. Reid, J. Am. Chem. Soc., 1954, 76, 3264 CrossRef CAS.
  3. (a) D. A. McCaulay and A. P. Lien, J. Am. Chem. Soc., 1951, 73, 2013 CrossRef CAS; (b) E. L. Mackor, A. Hofstra and J. H. van der Waals, Trans. Faraday Soc., 1958, 54, 186 RSC.
  4. P. Pfeiffer and R. Wizinger, Liebigs Ann. Chem., 1928, 461, 132 Search PubMed.
  5. C. MacLean and E. L. Mackor, Discuss. Faraday Soc., 1962, 34, 165 RSC.
  6. (a) R. Gut and K. Gautschi, J. Inorg. Nucl. Chem., (Hyman Mem. Vol.), 1976, 95 Search PubMed; (b) J. Devynck, A. Ben Hadid, P.-L. Fabre and B. Tremillon, Anal. Chim. Acta, 1978, 100, 343 CrossRef CAS.
  7. (a) L. P. Hammett and A. J. Deyrup, J. Am. Chem. Soc., 1932, 54, 2721 CrossRef CAS; (b) L. P. Hammett, Physical Organic Chemistry, McGraw-Hill, New York, 2nd edn., 1970 Search PubMed; (c) C. H. Rochester, Acidity Functions, Organic Chemistry Monographs, ed. Blomquist, Academic Press, New York, 1970, vol. 17 Search PubMed.
  8. G. A. Olah, G. K. Surya Prakash and J. Sommer, Superacids, Wiley–Interscience, New York, 1985, p. 9 Search PubMed.
  9. J. Bessiere, Anal. Chim. Acta, 1970, 52, 55 CrossRef CAS.
  10. (a) E. C. Hughes and S. M. Darling, Ind. Eng. Chem., 1951, 43, 746 Search PubMed; (b) M. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc., 1954, 76, 5865 CrossRef CAS.
  11. S. Pawlenko, Z. Anorg. Allg. Chem., 1965, 334, 292 CrossRef CAS.
  12. H. C. Brown and H. Pearsall, J. Am. Chem. Soc., 1951, 73, 4081 CrossRef.
  13. D. Fărcaşiu and A. Ghenciu, Prog. NMR Spectrosc., 1996, 29, 129 Search PubMed.
  14. (a) D. Fărcaşiu, S. L. Fisk, M. T. Melchior and K. D. Rose, J. Org. Chem., 1982, 47, 453 CrossRef CAS; (b) D. Fărcaşiu, Acc. Chem. Res., 1982, 15, 46 CrossRef CAS; (c) D. Fărcaşiu, G. Marino, G. Miller and R. V. Kastrup, J. Am. Chem. Soc., 1989, 111, 7210 CrossRef CAS.
  15. S. Pawlenko, Z. Anorg. Allg. Chem., 1962, 315, 291 CrossRef CAS.
  16. J. F. Bunnett and R. A. Y. Jones, Pure Appl. Chem., 1989, 60, 1115.
  17. S. Pawlenko, Z. Anorg. Allg. Chem., 1964, 328, 133 CrossRef CAS.
  18. M. Stacey, J. C. Tatlow and A. G. Sharpe, Advances in Fluorine Chemistry, Butterworths, London, 1960, ch. 3 Search PubMed.
  19. (a) A. Ghenciu, MS Thesis, University of Pittsburgh, 1994; (b) the hydrolysis of BF3 and HBF4 in much more dilute solutions was studied by C. A. Wamser, J. Am. Chem. Soc., 1948, 70, 1209 Search PubMed; 1951, 73, 409 CrossRef CAS.
  20. R. J. Gillespie and J. Liang, J. Am. Chem. Soc., 1988, 110, 6053 CrossRef CAS.
  21. (a) D. Fărcaşiu, A. Ghenciu and G. Miller, J. Catal., 1992, 134, 118 CrossRef CAS; (b) D. Fărcaşiu and A. Ghenciu, J. Am. Chem. Soc., 1993, 115, 10901 CrossRef CAS.
  22. (a) D. Fărcaşiu and A. Ghenciu, J. Catal., 1992, 134, 126 CrossRef CAS; (b) D. Fărcaşiu and H. Cao, J. Mol. Catal., 1994, 87, 215 CrossRef CAS; (c) D. Fărcaşiu and J. Q. Li, J. Phys. Chem., 1994, 98, 6893 CrossRef CAS; (d) D. Fărcaşiu and J. Q. Li, J. Catal., 1995, 152, 198 CrossRef CAS; (e) D. L. Hughes, J. Phys. Org. Chem., 1994, 7, 625 CrossRef CAS.
  23. D. Fărcaşiu and A. Ghenciu, Catal. Lett., 1995, 31, 351 CrossRef CAS.
  24. Standard Methods of Chemical Analysis, ed. F. J. Welcher, Nostrand Reinhold, New York, 6th edn., 1973, vol. 2, part A, p. 574 Search PubMed.
  25. K. Yates and H. Wai, J. Am. Chem. Soc., 1964, 86, 5408 CrossRef CAS.
  26. (a) J. H. Ridd, personal communication; (b) M. Sampoli, N. C. Marziano and C. Tortato, J. Phys. Chem., 1989, 93, 7532 CrossRef; (c) N. C. Marziano, Org. Reactivity, 1996, 30, 29 Search PubMed.
  27. (a) K. N. Bascombe and R. P. Bell, Discuss. Faraday Soc., 1957, 24, 158 RSC; (b) H. D. Beckey, Z. Naturforsch. A, 1959, 14, 712; 1960, 15, 822; (c) P. F. Knewstubb and A. W. Tickner, presented at the Meeting on Mass Spectrometry, ASTM, Atlantic City, 1960; (d) M. Eigen, Angew. Chem., 1963, 75, 489 CrossRef CAS.
  28. J. N. Brønsted and E. A. Guggenheim, J. Am. Chem. Soc., 1927, 49, 2554 CrossRef CAS.
  29. H. Lemaire and H. J. Lucas, J. Am. Chem. Soc., 1951, 73, 5198 CrossRef CAS.
  30. L. P. Hammett and M. A. Paul, J. Am. Chem. Soc., 1934, 56, 827 CrossRef CAS.
  31. A. Albert and E. P. Serjeant, The Determination of Ionization Constants, Chapman and Hall, London, 1984, p. 162 Search PubMed.
  32. J. E. Macintyre, Dictionary of Inorganic Compounds, Chapman and Hall, London, 1992, vol. 2, p. 3364 Search PubMed.
  33. A value of –3.25 was deduced in: P. A. H. Wyatt, Discuss. Faraday Soc., 1957, 24, 162 Search PubMed.
  34. (a) C. D. Nenitzescu and I. P. Cantuniari, Ber. Dtsch. Chem. Ges., 1933, 66, 1097; (b) C. D. Nenitzescu, M. Avram and E. Sliam, Bull. Soc. Chim. France, 1955, 1266 Search PubMed.
  35. (a) R. M. Roberts, J. Am. Chem. Soc., 1957, 79, 5484 CrossRef CAS; (b) C. D. Nenitzescu, I. Necsoiu, A. Glatz and M. Zalman, Chem. Ber., 1959, 92, 10 CAS.
  36. A. Schneider, R. W. Warren and E. J. Janoski, J. Org. Chem., 1966, 31, 1617 CAS.
  37. (a) T. Gramstad and R. N. Haszeldine, J. Chem. Soc., 1957, 4069 RSC; (b) J. B. Spencer and J. O. Lundgren, Acta Crystallogr., Sect. 3, 1973, 29, 1923 Search PubMed; (c) R. D. Howells and J. D. McCown, Chem. Rev., 1977, 77, 69 CrossRef CAS.
  38. E. M. Arnett and C. Y. Wu, J. Am. Chem. Soc., 1962, 84, 1680 CrossRef CAS.
  39. Discussions in Catalytic Chemistry. I. Catalysis by Strong Solid Acids (Post-congress workshop after the 11th International Congress on Catalysis), Baltimore, MD, USA, 6–7 July 1996.
  40. M. Hunger, D. Freude and H. Pfeifer, J. Chem. Soc., Faraday Trans., 1991, 87, 657 RSC.
  41. (a) P. Batamack, C. Dorémieux-Morin, J. Fraissard and D. Freude, J. Phys. Chem., 1991, 95, 3790 CrossRef CAS; (b) L. Heeribout, V. Semmer, P. Batamack, C. Dorémieux-Morin, R. Vincent and J. Fraissard, Stud. Surf. Sci. Catal., 1996, 101, 831 CAS; (c) for the method, see: C. Dorémieux-Morin, J. Magn. Reson., 1976, 21, 419 Search PubMed and subsequent papers.
  42. T. Xu, E. J. Munson and J. F. Haw, J. Am. Chem. Soc., 1994, 116, 1962 CrossRef CAS.
  43. (a) A. Zecchina, R. Buzzoni, S. Bordiga, F. Geobaldo, D. Scarano, G. Ricchiardi and G. Spoto, Stud. Surf. Sci. Catal., 1995, 97, 213 CAS; (b) F. Wakabayashi, J. N. Kondo, K. Domen and C. Hirose, J. Phys. Chem., 1996, 100, 1442 CrossRef CAS; (c) A. Zecchina, F. Geobaldo, G. Spoto, S. Bordiga, G. Ricchiardi, R. Buzzoni and G. Petrini, J. Phys. Chem., 1996, 100, 16584 CrossRef CAS.
  44. (a) F. Haase and J. Sauer, J. Am. Chem. Soc., 1995, 117, 3780 CrossRef CAS; (b) M. Krossner and J. Sauer, J. Phys. Chem., 1996, 100, 6199 CrossRef CAS; (c) J. Sauer, Science, 1996, 271, 774; (d) R. van Santen and G. J. Kramer, Chem. Rev., 1995, 95, 637 CrossRef CAS; (e) S. A. Zygmunt, L. A. Curtiss, L. E. Iton and M. K. Erhardt, J. Phys. Chem., 1996, 100, 6663 CrossRef CAS.
  45. L. Smith, A. K. Cheetham, R. E. Morris, L. Marchese, J. M. Thomas, P. A. Wright and J. Chen, Science, 1996, 271, 799 CAS.
  46. (a) K. Domen(Tokyo Inst. of Technology), at the meeting of ref. 39; (b) T. Fujino, M. Kashitani, S. S. Kano, F. Wakabayashi, F. Goto, M. Ishida, A. Wada, K. Domen and C. Hirose, in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.