Kinetics and mechanism of the oxidation of dimethyl sulfide by hydroperoxides in aqueous medium Study on the potential contribution of liquid-phase oxidation of dimethyl sulfide in the atmosphere

(Note: The full text of this document is currently only available in the PDF Version )

Peter Amels, Horst Elias and Klaus-Jürgen Wannowius


Abstract

Conventional and multi-wavelength stopped-flow spectrophotometry has been used to study the kinetics of the oxidation of dimethyl sulfide (DMS) by hydroperoxides, ROOH=hydrogen peroxide (H2O2), peroxo formic acid (HCO3H), peroxo acetic acid (CH3CO3H), peroxo nitrous acid (ONOOH), peroxo monosulfuric acid anion (PMS=HSO5-), and the H2O2 analogue hypochlorous acid (HOCl), in aqueous solution in the pH range 0–14 at 293 K and I=1.0 M. The reaction between DMS and ROOH and between dimethyl sulfoxide (DMSO) and ROOH is a second-order process, leading to DMSO and dimethyl sulfone (DMSO2), respectively. It was shown by gas chromatography that, except for the oxidant ONOOH, DMSO and DMSO2 are the only oxidation products. It follows from the pH dependence of the second-order rate constant k2 that both the hydroperoxide ROOH, rate constant kROOH, and its anion ROO-, rate constant kROO, oxidize DMS and DMSO, respectively. The data for kROOH (dm3 mol-1 s-1) and for kROO (dm3 mol-1 s-1) at 293 K for the formation of DMSO and DMSO2 are presented. For the oxidation of DMS kROOH>kROO; for the step DMS→DMSO, kROOH ranges from 4780 (PMS) to 0.018 (H2O2), whereas kROO lies in the range 88 (PMS) to 0.0018 (H2O2); for the step DMSO→DMSO2, kROOH ranges from 349 (HOCl) to 2.7×10-6 (H2O2), whereas kROO lies in the range 18 (PMS) to 8.4×10-5 (H2O2). A mechanistic interpretation of the oxidation reactions, based on the ambifunctional character of both ROOH and DMSO, is presented. The relevance of in-cloud oxidation of DMS by atmospheric hydroperoxides such as CH3CO3H and HCO3H is discussed and substantiated.


References

  1. Dimethylsulfide: Oceans, Atmosphere and Climate, ed. G. Restelli and G. Angeletti, Kluwer, Dordrecht, 1993 Search PubMed.
  2. S. B. Barone, A. A. Turnipseed and A. R. Ravishankara, Faraday Discuss., 1995, 100, 39 RSC.
  3. A. G. Davies, Organic Peroxides, Butterworths, London, 1961 Search PubMed.
  4. Y. G. Adewuyi and G. R. Carmichael, Environ. Sci. Technol., 1986, 20, 1017 CAS.
  5. P. Brimblecombe, S. Watts and D. Shooter, Proc. 194th ACS Meeting, American Chemical Society, Washington 1987, p. 96 Search PubMed.
  6. T. Pandurengan and P. Maruthamuthu, Bull. Chem. Soc. Jpn., 1981, 54, 3551 CAS.
  7. E. A. Betterton, Environ. Sci. Technol., 1992, 26, 527 CAS.
  8. M. O. Andreae and W. R. Barnard, Anal. Chem., 1983, 55, 608 CrossRef CAS.
  9. R. P. Kiene and G. Gerard, Marine Chemistry, 1994, 47, 1 Search PubMed.
  10. R. G. Ridgeway Jr., D. C. Thornton and A. R. Bandy, J. Atmos. Chem., 1992, 14, 53 CrossRef.
  11. M. O. Andreae, Limnol. Oceanogr., 1980, 25, 1054 Search PubMed.
  12. A. A. P. Pszenny, R. G. Harvey, C. J. Brown, R. F. Lang, W. C. Keene, J. N. Galloway and J. T. Merrill, Global Biogeochem. Cycles, 1990, 4, 367 CAS.
  13. W. G. Keith and R. E. Powell, J. Chem. Soc. A, 1969, 90 RSC.
  14. M. N. Hughes and H. G. Nicklin, J. Chem. Soc. A, 1968, 450 RSC.
  15. J. C. Morris, J. Phys. Chem., 1966, 70, 3798 CAS.
  16. C. Drexler, H. Elias, B. Fecher and K. J. Wannowius, Fresenius J. Anal. Chem., 1991, 340, 605 CrossRef CAS.
  17. R. M. Smith and A. E. Martell, Critical Stability Constants, Plenum Press, New York, 1976, vol. 4 Search PubMed.
  18. R. W. Alder and M. C. Whiting, J. Chem. Soc., 1964, 4707 RSC.
  19. S. D. Ross, J. Am. Chem. Soc., 1946, 68, 1484 CrossRef CAS.
  20. C. G. Overberger and R. W. Cummins, J. Am. Chem. Soc., 1953, 75, 1484 CrossRef.
  21. M. G. Evans and N. Uri, Trans. Faraday Soc., 1949, 45, 224 RSC.
  22. C. Marsh and J. O. Edwards, Prog. React. Kinet., 1989, 15, 35 Search PubMed.
  23. D. J. Benton and P. Moore, J. Chem. Soc. A, 1970, 3178 Search PubMed.
  24. M. N. Hughes and H. G. Nicklin, J. Chem. Soc. A, 1970, 925 RSC.
  25. W. A. Pryor, R. Cucto, X. Jin, W. H. Koppenol, M. Ngu-Schwemlein, G. L. Squadrito and R. M. Uppu, Free Radical Biol. Med., 1995, 18, 75 CrossRef CAS.
  26. A. F. Ghiron and R. C. Thompson, Inorg. Chem., 1989, 28, 3647 CrossRef CAS.
  27. H. Elias, B. Fecher and K. J. Wannowius, to be published.
  28. A. J. Everett and G. J. Minkoff, Trans. Faraday Soc., 1953, 49, 410 RSC.
  29. H. Elias, U. Götz and K. J. Wannowius, Atmos. Environ., 1994, 28, 439 CrossRef CAS.
  30. A. Skrabal, Z. Elektrochem, Angew. Phys. Chem., 1942, 48, 314 Search PubMed.
  31. J. O. Edwards, in Peroxide Reaction Mechanisms, ed. J. O. Edwards, Wiley-Interscience, New York, 1962, pp. 67–106 Search PubMed.
  32. Y.-N. Lee and X. Zhou, J. Geophys. Res., 1994, 99, 3597 CrossRef CAS.
  33. D. J. Jacob, J. Geophys. Res. D, 1986, 91, 9807 Search PubMed.
  34. L. I. Kleinman, J. Geophys. Res., 1986, 91, 10 889 CAS.
  35. T. J. Kelly, P. H. Daum and S. E. Schwartz, J. Geophys. Res., 1985, 90, 7861 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.