Determination of lateral interaction parameters for copper monolayers deposited on polycrystalline platinum

(Note: The full text of this document is currently only available in the PDF Version )

Lucia H. Mascaro, Sergio A. S. Machado and Luis A. Avaca


Abstract

Experimental results, calculations and modelling involving voltammetric experiments of Cu deposition on polycrystalline Pt in acid medium are presented. The total lattice interaction energies have been studied by two different approaches. The lateral interaction parameter g from the Frumkin isotherm was calculated following a literature model that relates it to the peak half-width. A full Cu monolayer was deposited at 0.05 V for 250 s and then redissolved by an anodic scan. The calculated g values were related to the interactions between copper ad-atoms and hydrogen atoms at low Cu coverages and between copper ad-atoms themselves at high coverages. The long-range lattice interaction energies were estimated using an occupancy model developed for each crystallographic face of the polycrystalline Pt surface. The number and distances of Cu ad-atoms neighbouring a central one determines the total lattice interaction energy. For comparison, it was possible to demonstrate that each voltammetric peak has its own lattice interaction energy value, associated with the peak potentials. Thus, with the two parameters calculated here it was possible to describe the peak potentials and shapes for copper underpotential deposition on polycrystalline Pt surfaces.


References

  1. N. Furuya and S. Motoo, J. Electroanal. Chem., 1976, 72, 165 CrossRef CAS.
  2. S. Szabó, Int. Rev. Phys. Chem., 1991, 10, 207 CAS.
  3. D. Margheritis, R. C. Salvarezza, M. C. Giordano and A. J. Arvia, J. Electroanal. Chem., 1987, 229, 327 CrossRef CAS.
  4. C. Chierchie and C. Mayer, Electrochim. Acta, 1988, 33, 341 CrossRef.
  5. N. Van Huong and M. J. Gonzalez-Tejera, J. Electroanal. Chem., 1988, 244, 249 CrossRef.
  6. G. Kokkinidis and D. Jannakoudakis, J. Electroanal. Chem., 1984, 162, 163 CrossRef CAS.
  7. G. Kokkinidis, J. Electroanal. Chem., 1986, 201, 217 CrossRef CAS.
  8. R. R. Adzic, in Advances in Electrochemistry and Electrochemical Engineering, ed. H. Gerischer, Wiley, New York, 1984, vol. 13, p. 159 Search PubMed.
  9. B. E. Conway and H. Angerstein-Kozlowska, Acc. Chem. Res., 1981, 14, 49 CrossRef CAS.
  10. S. A. S. Machado, A. A. Tanaka and E. R. Gonzalez, Electrochim. Acta, 1991, 36, 1325 CrossRef CAS.
  11. Handbook of Chemistry and Physics, ed. R. C. Weast, CRC Press, Cleveland, 57th edn., 1977, p. D-141 Search PubMed.
  12. B. E. Conway and S. Marshall, Electrochim. Acta, 1983, 28, 1003 CrossRef CAS.
  13. M. Boudart, J. Am. Chem. Soc., 1952, 74, 3556 CrossRef CAS.
  14. P. C. Andricacos and P. N. Ross, J. Electroanal. Chem., 1984, 167, 301 CrossRef CAS.
  15. A. S. Dakkouri, N. Batina and D. M. Kolb, Electrochim. Acta, 1993, 38, 2467 CrossRef CAS.
  16. N. Markovic and P. N. Ross, Langmuir, 1993, 9, 580 CrossRef CAS.
  17. D. Armand and J. Clavilier, J. Electroanal. Chem., 1987, 225, 205 CrossRef CAS.
  18. D. Armand and J. Clavilier, J. Electroanal. Chem., 1987, 233, 251 CrossRef CAS.
  19. B. E. Conway and H. Angerstein-Kozlowska, J. Electroanal. Chem., 1980, 113, 63 CrossRef CAS.
  20. B. E. Conway and E. Gileadi, Trans. Faraday Soc., 1962, 58, 2493 RSC.
  21. B. E. Conway, E. Gileadi and H. Dzieciuch, Electrochim. Acta, 1963, 8, 143 CrossRef CAS.
  22. M. Noel, S. Chandrasekaran and C. A. Basha, J. Electroanal. Chem., 1987, 225, 93 CrossRef CAS.
  23. R. Woods, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York., 1976, vol. 9, p. 1 Search PubMed.
  24. B. E. Conway and L. Bai, J. Electroanal. Chem., 1986, 198, 149 CrossRef CAS.
  25. N. Furuya and S. Koide, Surf. Sci., 1989, 220, 18 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.