Thermodynamics of CaO–Al2O3–SiO2 and CaF2–CaO–Al2O3 –SiO2 melts

(Note: The full text of this document is currently only available in the PDF Version )

A. I. Zaitsev, A. D. Litvina, N. P. Lyakishev and B. M. Mogutnov


Abstract

Exchange reactions, occurring in CaF2–CaO–Al2O3 –SiO2 liquid solution, and reactions between CaF2–CaO–Al2O3 –SiO2, or CaO–Al2O3–SiO2 melts and Ta, Nb or Mo have been studied, using Knudsen effusion mass spectrometry. SiF3+, SiF2+, SiF+, CaF2+, CaF+, Ca+, Al2F5+, AlF3+, AlF2+, AlF+, Al+, AlOF+, SiO+, MO+, MO2+ (M=Nb, Ta, Mo) and MoO3+ were detected in the mass spectra of the saturated vapour. SiF4, AlF3, AlOF, SiO, CaF2 and MO2 were found to be the main vapour species and their partial vapour pressures were measured and used for calculation of the components' activities. The activities, computed in different ways, were in good agreement. Representative files of experimental data comprising ca. 3500 activities of all components in the CaF2–CaO–Al2O3 –SiO2 liquid solution and more than 350 values of a(SiO2) in the CaO–Al2O3–SiO2 melt at various temperatures and concentrations were obtained. The thermodynamic functions of the liquid solutions were described by the associated-solution model under the assumption that binary and ternary associates and SiO2 polymer complexes exist in the melts. The model and the thermodynamic functions of solid compounds were applied for the computation of phase equilibria in the CaO–Al2O3–SiO2 and CaF2–CaO–Al2O3 –SiO2 systems. The computed coordinates of the ternary invariant points are shown to agree with the available experimental data.


References

  1. I. D. Baird and J. Taylor, J. Chem. Soc., Faraday. Trans., 1958, 54, 526 Search PubMed.
  2. D. A. R. Kay and J. Taylor, J. Chem. Soc., Faraday Trans., 1960, 56, 1372 Search PubMed.
  3. R. H. Rein and J. Chipman, Trans. Metall. Soc. AIME, 1965, 233, 415 Search PubMed.
  4. J. Cameron, T. B. Gibbons and J. Taylor, J. Iron Steel Inst. (London), 1966, 204, 1223 Search PubMed.
  5. B. Ozturk and R. J. Fruechan, Metall. Trans. B, 1987, 18, 746 Search PubMed.
  6. J. Chipman and R. Baschwitz, Trans. Metall. Soc. AIME, 1963, 227, 473 Search PubMed.
  7. G. A. Rankin and F. E. Wright, Am. J. Sci., 1915, 39, 1 Search PubMed.
  8. R. G. Berman and T. H. Brown, Geochim. Cosmochim. Acta, 1984, 48, 661 CrossRef CAS.
  9. H. Gaye and J. Welfringer, in Second International Symposium on Metallurgical Slags and Fluxes, ed. H. A. Fine and D. R. Gaskell, Metal. Soc. AIME, New York, 1984, p. 357 Search PubMed.
  10. G. G. Mikhailov, Thermodynamic Basis for Optimizing Deoxidation of Steel and Modiffcation of Non-metallic Inclusions, Dr. Sci. Thesis, Moscow Steel and Alloy Institute, Moscow, 1985 Search PubMed.
  11. M. Hoch, CALPHAD: Compu. Coupling Phase Diagrams Thermochem., 1988, 12, 45 Search PubMed.
  12. G. Eriksson and A. D. Pelton, Metall. Trans. B, 1993, 24, 807 Search PubMed.
  13. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, J. Chem. Thermodyn., 1990, 22, 531 CrossRef CAS.
  14. A. I. Zaitsev, A. D. Litvina and B. M. Mogutnov, J. Chem. Thermodyn., 1992, 24, 1039 CAS.
  15. A. I. Zaitsev and B. M. Mogutnov, J. Mater. Chem., 1995, 5, 1063 RSC.
  16. A. I. Zaitsev, A. V. Leites, A. D. Litvina and B. M. Mogutnov, Steel Res., 1994, 65, 368 Search PubMed.
  17. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, High Temp. Sci., 1990, 28, 341 Search PubMed.
  18. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Vys Temp., 1989, 27, 465 Search PubMed.
  19. L. V. Gurvitch, Vestnik Akad. Nauk SSSR, 1983, 3, 54 Search PubMed.
  20. A. I. Zaitsev, M. A. Zemchenko and B. M. Mogutnov, Zh. Russ. Fiz. Khim. O., 1990, 64, 3377 Search PubMed.
  21. A. I. Zaitsev, A. D. Litvina and B. M. Mogutnov, J. Chem. Thermodyn., 1992, 24, 737 CAS.
  22. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Zh. Russ. Fiz. Khim. O., 1990, 64, 1494 Search PubMed.
  23. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Zh. Russ. Fiz. Khim. O., 1990, 64, 1505 Search PubMed.
  24. J. B. Mann, Proc. Int. Conf. Mass Spectroscopy, ed. T. Ogata and T. Hayakama, Univ. Park Press, Tokyo, 1970, p. 814 Search PubMed.
  25. A. I. Zaitsev, A. D. Litvina and B. M. Mogutnov, Neorg. Mater., 1995, 31, 762.
  26. A. I. Zaitsev, A. D. Litvina and B. M. Mogutnov, Neorg. Mater., 1995, 31, 768.
  27. D. R. Gaskell, Can. Metall. Q., 1981, 20, 3 CAS.
  28. Y. Bottinga, D. F. Weill and P. Richet, in Thermodynamic of Minerals and Melts, Springer-Verlag, Berlin, 1981, p. 207 Search PubMed.
  29. B. Hallstedt, M. Hillert, M. Selleby and B. Sundman, CALPHAD: Compu. Coupling Phase Diagrams Thermochem., 1994, 18, 31 Search PubMed.
  30. A. I. Zaitsev and B. M. Mogutnov, Neorg. Mater., 1997, 32 in press.
  31. A. I. Zaitsev, A. D. Litvina and B. M. Mogutnov, Neorg. Mater., 1997, 32, 76.
  32. I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans, London, 1954 Search PubMed.
  33. A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Proc. Sixth Int. Iron and Steel Congress, Iron and Steel Inst. Jpn.Nagoya, 1990, vol. 1, p. 185 Search PubMed.
  34. I. A. Aksay and J. A. Pask, J. Am. Ceram. Soc., 1975, 58, 507 CAS.
  35. Schlacken Atlas, Verlag Stahleisen M. B. H., Düsseldorf, 1981 Search PubMed.
  36. K. S. Mills and B. J. Keene, Int. Metall. Rev., 1981, 1, 21 Search PubMed.
  37. D. M. Edmunds and J. Taylor, J. Iron Steel Inst. (London), 1971, 231, 280 Search PubMed.
  38. T. G. Chart, High Temp.-High Pressures, 1970, 2, 461 Search PubMed.
  39. O. Kubaschewski, C. B. Alcock and P. J. Spencer, Materials Thermochemistry, Pergamon Press, Oxford, 6th edn., 1993 Search PubMed.
  40. A. I. Zaitsev, M. A. Zemchenko, A. D. Litvina and B. M. Mogutnov, J. Mater. Chem., 1993, 3, 541 RSC.
  41. A. Muan and E. F. Osborn, Phase Equilibria among Oxides in Steelmaking, Reading, MA., 1965 Search PubMed.
  42. E. F. Osborn and A. Muan, in Phase Diagrams for Ceramists, ed. E. M. Levin, C. R. Robbins and H. F. McMurdie, The American Ceramic Society, Columbus, OH, 1964, vol. 1, p. 219 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.