Reflection absorption IR studies of vibrational energy transfer processes and adsorption energetics

(Note: The full text of this document is currently only available in the PDF Version )

Jeanette C. Cook, Steven K. Clowes and Elaine M. McCash


Abstract

The adsorption of CO on Cu(100) and Pd(100) surfaces has been studied using reflection absorption IR spectroscopy (RAIRS) at cryogenic temperatures, in the range from ca. 23 K to the CO desorption temperature. CO is found to be adsorbed on terminal sites on Cu(100) and on bridged sites on Pd(100) in the temperature range 23–77 K. CO can occupy some terminal sites on Pd when defects which offer terminal rather than bridging sites are available, in agreement with the findings of other workers. We report on the changes in absorption profiles of νCO at 79 and 23 K on both substrates, detailing the change in frequency, intensity and full-width-at-half-maximum (FWHM) as a function of temperature. Below 35 K, CO is physisorbed above the chemisorbed layer on both substrates and this is found to affect the chemisorbed phase, resulting in changes in the absorption profiles of the chemisorbed CO-stretching mode. We interpret these observations in terms of the delicate energetic balance between the highest-coverage chemisorbed phases and lower-coverage ordered phases combined with a physisorbed overlayer. We have studied the absorption profiles of the CO-stretching mode for adsorbed CO (νCO), from 23 K and above and this has enabled us to determine the pathways of vibrational energy transfer (VET) for the CO/metal systems. We report on the frequency shifts for νCO for the highest-coverage CO phase on Pd(100) in the 23–80 K temperature range and compare the results with the frequency shifts for the compressed Cu(100)/CO system in the 23–120 K range, in order to assess the effect of the occupation of different sites on VET processes. On Cu(100) a major decay channel is via coupling to the frustrated translation, whereas on Pd(100) the dominant process appears to be coupling to the metal phonons.


References

  1. J. W. Gadzuk and A. C. Luntz, Surf. Sci., 1984, 144, 429 CrossRef CAS.
  2. J. Pritchard, Surf. Sci., 1979, 79, 231 CrossRef CAS.
  3. C. J. Hirschmugl, G. P. Williams, F. M. Hoffmann and Y. L. Chabal, Phys. Rev. Lett., 1990, 65, 480 CrossRef CAS.
  4. J. C. Cook and E. M. McCash, Surf. Sci. Lett., 1996, 356, L445 Search PubMed.
  5. A. M. Bradshaw and F. M. Hoffmann, Surf. Sci., 1978, 72, 513 CrossRef CAS.
  6. A. Ortega, F. M. Hoffmann and A. M. Bradshaw, Surf. Sci., 1982, 119, 79 CrossRef CAS.
  7. J. P. Camplin, J. C. Cook and E. M. McCash, J. Chem. Soc., Faraday Trans., 1995, 91, 3563 RSC.
  8. J. Pritchard and P. Hollins, Prog. Surf. Sci., 1985, 19, 275 CrossRef CAS.
  9. J. C. Cook and E. M. McCash, Surf. Sci., 1997, 371, 213 CrossRef CAS.
  10. R. Ryberg, Surf. Sci., 1982, 114, 627 CrossRef CAS.
  11. R. E. Benfield and B. F. G. Johnson, Transition Metal Chem., 1981, 6, 131 CrossRef CAS.
  12. P. Udval, P.-A. Karlsson, C. Nyberg, S. Anderson and N. V. Richardson, Surf. Sci., 1988, 202, 167 CrossRef.
  13. J. C. Tracy, J. Chem. Phys., 1972, 56, 2748 CrossRef CAS.
  14. Z. Xu, M. G. Sherman, Y. T. Yates Jr and P. R. Antioniewicz, Surf. Sci., 1992, 276, 249 CrossRef CAS.
  15. R. Ryberg, Solid State Commun., 1981, 39, 173 CrossRef CAS.
  16. B. N. J. Persson, F. M. Hoffmann and R. Ryberg, Phys. Rev. B, 1986, 34, 2266 CrossRef CAS.
  17. D. C. Langreth and M. Persson, Phys. Rev. B, 1991, 43, 1353 CrossRef CAS.
  18. S. K. Clowes and E. M. McCash, in preparation.
  19. M. Trenary, K. J. Uram, F. Bozso and J. T. Yates Jr., Surf. Sci., 1984, 146, 269 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.