Spectroscopic investigation of vanadium speciation in vanadium-doped nanocrystalline anatase

(Note: The full text of this document is currently only available in the PDF Version )

Victor Luca, Stuart Thomson and Russell F. Howe


Abstract

The speciation of vanadium doped into anatase particles of 50–90 Å diameter has been studied by a variety of techniques including solid state 51V NMR, EPR, XPS and Raman spectroscopy. EPR spectra of V-doped anatase are extremely complex showing up to five different V4+ centres (species A–E). Partial spin Hamiltonian parameters for these species have been determined and ascribed to interstitial (species A) and substitutional V4+ (species B–D), as well as surface V4+-rich clusters (species E). Solid state 51V NMR also shows the presence of several V5+ species that exhibit both tetrahedral and octahedral coordination and which are attributed to structural and residual surface V5+. It is shown by NMR, Raman spectroscopy and XPS that the dissolution of this residual surface vanadium component into the anatase structure becomes increasingly difficult as the vanadium concentration increases.


References

  1. A. Fujishima and K. Honda, Nature (London), 1972, 238, 37 CAS.
  2. K. E. Karakitsou and Z. E. Verykios, J. Phys. Chem., 1993, 97, 1184 CrossRef CAS.
  3. W. Choi, A. Termin and M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1994, 33, 1091 CrossRef.
  4. W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem., 1994, 98, 13669 CrossRef.
  5. S. T. Martin, C. L. Morrison and M. R. Hoffmann, J. Phys. Chem., 1994, 98, 13695 CrossRef CAS.
  6. N. Serpone, D. Lawless, J. Disdier and J.-M. Herrmann, Langmuir, 1994, 10, 643 CrossRef CAS.
  7. B. O'Regan, J. Moser, M. Anderson and M. Grätzel, J. Phys. Chem., 1990, 94, 8720 CrossRef CAS.
  8. V. Luca and D. J. MacLachan, SIMER—a program for the nonlinear least squares fitting of EPR spectra using second-order perturbation theory. Research School of Chemistry, The Australian National University, Canberra, Australia, 1994.
  9. H. Eckert, G. Deo, I. E. Wachs and A. M. Hirt, J. Phys. Chem., 1990, 93, 6796.
  10. J. Nogier, M. Delamar, P. Ruiz, B. Delmon, J. P. Bonnelle, M. Guelton, L. Gengembre, J. C. Vedrine, M. Brun, P. Albers, K. Seibold, M. Baerns, H. Papp, J. Stoch, L. T. Andersson, J. Kiwi, R. Thampi, M. Grätzel, G. C. Bond, N. Verma, J. C. Vickerman and R. H. West, Catal. Today, 1994, 20, 109 CrossRef CAS.
  11. A. Davidson and M. Che, J. Phys. Chem., 1992, 96, 9909 CrossRef CAS.
  12. H. Eckert and I. E. Wachs, J. Phys. Chem., 1989, 93, 6796 CrossRef CAS.
  13. O. B. Lapina, V. M. Mastikhin, A. A. Shubin, V. N. Krasilnikov and K. I. Zamaraev, Prog. NMR Spectrosc., 1992, 24, 457 Search PubMed.
  14. R. H. H. Smits, K. Seshan, J. R. H. Ross and A. P. M. Kentgens, J. Phys. Chem., 1995, 99, 9169 CrossRef.
  15. G. T. Went, S. T. Oyama and A. T. Bell, J. Phys. Chem., 1990, 94, 4240 CrossRef CAS.
  16. J. Engweiler and A. Baiker, Appl. Catal., 1994, 120, 187 CrossRef CAS.
  17. R. Gallay, J. J. van der Klink and J. Moser, Phys. Rev. B: Condens. Matter, 1986, 34, 3060 Search PubMed.
  18. M. Grätzel and R. F. Howe, J. Phys. Chem., 1990, 94, 2566 CrossRef.
  19. (a) R. K. Nurman and K. C. Giese, Inorg. Chem., 1978, 17, 1160 CrossRef; (b) C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, Wiley-Interscience, New York, 1976, p. 123 Search PubMed.
  20. H. J. Gerristen and H. Lewis, Phys. Rev., 1960, 119, 1010 CrossRef.
  21. R. de Biasi, A. A. R. Fernandes, M. L. N. Grillo and R. J. Brazil, J. Phys. Chem. Solids, 1994, 55, 453 CrossRef CAS.
  22. F. C. Newman and L. G. Rowan, Phys. Rev. B: Solid State, 1972, 5, 4231 Search PubMed.
  23. F. Kubec and Z. Šroubek, J. Chem. Phys., 1972, 57, 1660 CrossRef CAS.
  24. S. Jansen, T. Yaping, M. J. Palmieri, M. Sanati and A. Andersson, J. Catal., 1992, 138, 79 CrossRef CAS.
  25. D. W. Murphy, R. J. Cava, S. M. Zahurak and A. Santoro, Solid State Ionics, 1983, 9&10, 413 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.