NMR-detected tracer technique to measure diffusion in condensed matter

(Note: The full text of this document is currently only available in the PDF Version )

Oleg F. Bezrukov, Bertran Deloche, Andrey V. Struts and Carlo A. Veracini


Abstract

A simple method to study diffusion with the help of NMR has been suggested, based on the measurement of the rate of establishment of equilibrium in a sample with initial non-equilibrium distribution of labelled species. The distribution of components in the sample during the process of diffusion was determined with the use of a standard NMR spectrometer or relaxometer. Diffusion coefficients, D, measured in water and the plastic phase of sulfolane agreed well with the data obtained by other methods. D values for dioxane in cross-linked polyurethane and for water in the lamellar phase of water–ammonium perfluorononanoate (APFN) mixtures were also measured, to demonstrate the application of the method. The technique, being a tracer method, can be applied in a number of cases where the application of spin-echo is difficult (e.g. low concentration of solvent in polymers, in conditions of incomplete averaging of internal fields, large chemical shifts etc.); for the study of mutual diffusion and dissolution kinetics of complex phase mixtures; and for the measurement of D in systems with physical hindrances to diffusion where the method allows one to determine D corresponding to ‘infinite’ time of observation.


References

  1. S. Blackband and P. Mansfield, J. Phys. C, 1986, 19, L49 CrossRef CAS.
  2. Z. Pearl, M. Magaritz and P. Bendel, J. Magn. Reson., 1991, 95, 597 CAS.
  3. T. A. Carpenter, E. S. Davis, C. Hall, L. D. Hall, W. D. Hoff and M. A. Wilson, Mater. Struct., 1993, 26, 286 Search PubMed.
  4. M. P. Hollewand and L. F. Gladden, Chem. Eng. Sci., 1995, 50, 327 CrossRef CAS.
  5. P. A. Johnson and A. L. Babb, J. Phys. Chem., 1956, 60, 14 CrossRef CAS.
  6. A. P. Hardt, D. K. Anderson, R. Ruthbun, B. W. Mar and A. L. Babb, J. Phys. Chem., 1959, 63, 2059 CrossRef CAS.
  7. O. F. Bezrukov, PhD Thesis, Leningrad, 1968.
  8. O. F. Bezrukov and V. P. Fokanov, in Nuclear Magnetic Resonance, Leningrad University Press, 1968, vol. 2, p. 114 Search PubMed.
  9. D. W. McCall and D. C. Douglass, J. Phys. Chem., 1967, 71, 987 CrossRef CAS.
  10. R. Mills, Ber. Bunsen-Ges. Phys. Chem., 1971, 75, 195 Search PubMed.
  11. O. Eisenberg and W. Kauzman, The Structure and Properties of Water, Oxford University Press, London, 1969 Search PubMed.
  12. A. I. Maklakov, V. D. Skirda and N. F. Fatkullin, Self-diffusion in Polymer Solutions and Melts, Kazan University Press, Kazan, 1987 Search PubMed.
  13. J. M. Chezeau and J. H. Strange, Phys. Rep., 1979, 59, 1 CrossRef.
  14. G. J. Kruger, Phys. Rep., 1982, 82, 229 CrossRef.
  15. J. Kaerger and G. Fleischer, Trends Anal. Chem., 1994, 13, 145 CrossRef CAS.
  16. R. C. Wayne and R. M. Cotts, Phys. Rev., 1966, 151, 264 Search PubMed.
  17. B. Robertson, Phys. Rev., 1966, 151, 273 Search PubMed.
  18. E. O. Stejskal, Advan. Mol. Relaxation Process., 1972, 3, 27 Search PubMed.
  19. O. F. Bezrukov, P. N. Vorontsov-Vel'yaminov and E. M. Ushakova, Z. Struk. Khim., 1972, 13, 388 (J. Struct. Chem., 1972, 13, 366) Search PubMed.
  20. P. T. Callaghan, Aust. J. Phys., 1984, 37, 359 Search PubMed.
  21. P. Stilbs, Progr. NMR Spectrosc., 1987, 19, 1 Search PubMed.
  22. J. Karger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley, Chichester, 1991 Search PubMed.
  23. J. Duclaux, Diffusion dans les Liquides, Hermann et Cie, Paris, 1938 Search PubMed.
  24. E. A. Stern, E. M. Irish and E. Eyring, J. Phys. Chem., 1940, 44, 981 CrossRef.
  25. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970 Search PubMed.
  26. K. R. Harris and L. A. Woolf, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 377 RSC.
  27. J. S. Rowlinson, Physica, 1953, 19, 303 Search PubMed.
  28. I. B. Rabinovich, The Influence of Isotopy on the Physico-Chemical Properties of Liquids, Consultants Bureau, New York, 1970 Search PubMed.
  29. L. G. Longsworth, J. Phys. Chem., 1960, 64, 1914 CAS.
  30. M. Holz, H. Weingartner and A. Sacco, Ber. Bunsen-Ges. Phys. Chem., 1990, 94, 332 Search PubMed.
  31. J. A. Pople, Physica, 1953, 19, 668 Search PubMed.
  32. E. C. McLaughlin, Physica, 1960, 26, 650 Search PubMed.
  33. N. Boden, P. H. Jackson, N. McMullen and M. C. Holmes, Chem. Phys. Lett., 1979, 65, 476 CrossRef CAS.
  34. P. Sotta, B. Deloche and J. Herz, Polymer, 1988, 29, 1171 CrossRef CAS.
  35. J. Karger and W. Heink, Exp. Tech. Phys., 1971, 19, 453 Search PubMed.
  36. M. N. Akimov, O. F. Bezrukov, A. V. Struts and V. I. Ustimov, Z. Strukt. Khim., 1989, 30(6), 47; (J. Struct. Chem., 1989, 30, 906) Search PubMed.
  37. A. Fratiello and D. C. Douglass, J. Mol. Spectrosc., 1963, 11, 465 CrossRef CAS.
  38. G. Chidichimo, L. Coppola, C. LaMesa, G. A. Ranieri and A. Saupe, Chem. Phys. Lett., 1988, 145, 85 CrossRef CAS.
  39. C. A. Veracini, A. V. Struts and O. F. Bezrukov, Chem. Phys. Lett., 1996, 263, 228 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.