Kinetics and thermochemistry of the R+HBr⇄RH+Br (R=n-C3H7, isoC3H7, n-C4H9, isoC4H9, sec-C4H9 or tert-C4H9) equilibrium

(Note: The full text of this document is currently only available in the PDF Version )

Jorma A. Seetula and Irene R. Slagle


Abstract

The kinetics of the reactions of n-C3H7, isoC3H7, n-C4H9, isoC4H9, sec-C4H9 and tert-C4H9 radicals, R, with HBr have been investigated in a heatable tubular reactor coupled to a photoionization mass spectrometer. The reactions were studied by a time-resolved technique under pseudo-first-order conditions, where the rate constants of R+HBr reactions were obtained by monitoring the decay of the radical as a function of time. The radical was photogenerated in situ in the flow reactor by pulsed 248 nm exciplex laser radiation. All six reactions were studied separately over a wide range of temperatures and, in these temperature ranges, the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ+Students t values, units cm3 molecule-1 s-1): k(n-C3H7)=(1.6±0.2) ×10-12 exp[+(5.4±0.2) kJ mol-1/RT], k(isoC3H7)=(1.4±0.2)×10 -12 exp[+(6.9±0.2) kJ mol-1/RT], k(n-C4H9)=(1.3±0.2) ×10-12 exp[+(6.4±0.4) kJ mol-1/RT], k(isoC4H9)=(1.4±0.2) ×10-12 exp[+(6.1±0.2) kJ mol-1/RT], k(sec-C4H9)=(1.4±0.3) ×10-12 exp[+(7.5±0.3) kJ mol-1/RT] and k(tert-C4H9)=(1.2±0.3 )×10-12 exp[+(8.3±0.3) kJ mol-1/RT]. The kinetic information was combined with the kinetics of the Br+RH reactions to calculate the entropy and the heat of formation values for the radicals studied. The thermodynamic values were obtained at 298 K using a second-law procedure. The entropy values and enthalpies of formation are (entropy in J K-1 mol-1 and enthalpy in kJ mol-1): 284±5, 100.8±2.1 (n-C3H7); 281±5, 86.6±2.0 (isoC3H7); 329±5, 80.9±2.2 (n-C4H9); 316±5, 72.7±2.2 (isoC4H9); 330±5, 66.7±2.1 (sec-C4H9) and 315±4, 51.8±1.3 (tert-C4H9). The C–H bond strength of analogous saturated hydrocarbons derived from the enthalpy of reaction values are (in kJ mol-1): 423.3±2.1 (primary C–H bond in propane), 409.1±2.0 (secondary C–H bond in propane), 425.4±2.1 (primary C–H bond in n-butane), 425.2±2.1 (primary C–H bond in isobutane), 411.2±2.0 (secondary C–H bond in n-butane) and 404.3±1.3 (tertiary C–H bond in isobutane). The enthalpy of formation values are used in group additivity calculations to estimate ΔfH298° values of six pentyl and four hexyl free radical isomers.


References

  1. D. I. Davies and M. J. Parrott, Free Radicals in Organic Synthesis, in series of Reactivity and Structure Concepts in Organic Chemistry, ed. K. Hafner, C. W. Rees, B. M. Trost, J.-M. Lehn, P. von R. Schleyer and R. Zahradník, Springer-Verlag, Berlin, 1978, vol. 7 Search PubMed.
  2. M. J. Pilling and V. K. Proudler, Int. Rev. Phys. Chem., 1990, 9, 329 CAS.
  3. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data, 1992, 21, 411 CAS.
  4. J. A. Kerr, Chem. Rev., 1966, 66, 465 CrossRef CAS.
  5. J. A. Seetula, J. Chem. Soc., Faraday Trans., 1996, 92, 3069 RSC.
  6. I. R. Slagle and D. Gutman, J. Am. Chem. Soc., 1985, 107, 5342 CrossRef CAS.
  7. J. A. Seetula, Ann. Acad. Sci. Fenn., Ser. A2, 1991, 234 Search PubMed.
  8. L. F. Keyser, J. Phys. Chem., 1984, 88, 4750 CrossRef CAS.
  9. G. Hancock, in Modern Gas Kinetics, ed. M. J. Pilling and I. W. M. Smith, Oxford, 1987, p. 137 Search PubMed.
  10. P. W. Seakins, M. J. Pilling, J. T. Niiranen, D. Gutman and L. N. Krasnoperov, J. Phys. Chem., 1992, 96, 9847 CrossRef CAS.
  11. J. J. Russell, J. A. Seetula, R. S. Timonen, D. Gutman and D. F. Nava, J. Am. Chem. Soc., 1988, 110, 3084 CrossRef CAS.
  12. Á. Bencsura, V. D. Knyazev, S.-B. Xing, I. R. Slagle and D. Gutman, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Sydney, Australia, 1992, p. 629 Search PubMed.
  13. P. W. Seakins, S. H. Robertson, M. J. Pilling, I. R. Slagle, G. W. Gmurczyk, Á. Bencsura, D. Gutman and W. Tsang, J. Phys. Chem., 1993, 97, 4450 CrossRef CAS.
  14. V. D. Knyazev, I. A. Dubinsky, I. R. Slagle and D. Gutman, J. Phys. Chem., 1994, 98, 5279 CrossRef CAS.
  15. H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, J. Phys. Chem. Ref. Data, 1977, 6, Suppl. No. 1.
  16. J. T. Niiranen, D. Gutman and L. N. Krasnoperov, J. Phys. Chem., 1992, 96, 5881 CrossRef CAS.
  17. N. Washida and K. D. Bayes, J. Phys. Chem., 1980, 84, 1309 CrossRef CAS.
  18. M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data, 1985, 14, Suppl. No. 1.
  19. A. Burcat, in Combustion Chemistry, ed. W. C. Gardiner Jr., New York, 1984, ch. 8 Search PubMed.
  20. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Supplement No. 1.
  21. W. Tsang, J. Am. Chem. Soc., 1985, 107, 2872 CrossRef CAS.
  22. Y. Chen, A. Rauk and E. Tschuikow-Roux, J. Phys. Chem., 1990, 4, 2775 CrossRef.
  23. S. G. Lias, J. F. Liebman, R. D. Levin, S. A. Kafafi and S. E. Stein, STRUCTURES AND PROPERTIES, NIST database 25, 1994 Search PubMed.
  24. S. W. Benson, Thermochemical Kinetics, Wiley, New York, 2nd edn., 1976 Search PubMed.
  25. Y. Chen, A. Rauk and E. Tschuikow-Roux, J. Phys. Chem., 1992, 96, 6854 CrossRef CAS.
  26. J. A. Seetula and I. R. Slagle, 13th Int. Symp. On Gas Kinetics, University College Dublin, Dublin, 1994, p. 148 Search PubMed.
  27. J. A. Seetula and D. Gutman, J. Phys. Chem., 1990, 94, 7529 CrossRef CAS.
  28. J. M. Nicovich, C. A. van Dijk, K. D. Kreutter and P. H. Wine, J. Phys. Chem., 1991, 95, 9890 CrossRef CAS.
  29. P. W. Seakins and M. J. Pilling, J. Phys. Chem., 1991, 95, 9874 CrossRef CAS.
  30. P. D. Richards, R. J. Ryther and E. Weitz, J. Phys. Chem., 1990, 94, 3663 CrossRef CAS.
  31. J. J. Russell, J. A. Seetula and D. Gutman, J. Am. Chem. Soc., 1988, 110, 3092 CrossRef CAS.
  32. Y. Chen and E. Tschuikow-Roux, J. Phys. Chem., 1993, 97, 3742 CrossRef CAS.
  33. J. A. Seetula, J. J. Russell and D. Gutman, J. Am. Chem. Soc., 1990, 112, 1347 CrossRef CAS.
  34. R. P. Ruiz and K. D. Bayes, J. Phys. Chem., 1984, 88, 2592 CrossRef CAS.
  35. R. Paltenghi, E. A. Ogryzlo and K. D. Bayes, J. Phys. Chem., 1984, 88, 2595 CrossRef CAS.
  36. M. C. R. Symons, Tetrahedron, 1962, 18, 333 CrossRef CAS.
  37. A. L. Castelhano and D. Griller, J. Am. Chem. Soc., 1982, 104, 3655 CrossRef CAS.
  38. J. J. Russell, J. A. Seetula, S. M. Senkan and D. Gutman, Int. J. Chem. Kinet., 1988, 20, 759 CrossRef CAS.
  39. G. C. Fettis, J. H. Knox and A. F. Trotman-Dickenson, J. Chem. Soc., 1960, 4177 RSC.
  40. E. Tschuikow-Roux and Y. Chen, J. Am. Chem. Soc., 1989, 111, 9030 CrossRef CAS.
  41. J. L. Holmes, F. P. Lossing and A. Maccoll, J. Am. Chem. Soc., 1988, 110, 7339 CrossRef CAS.
  42. V. D. Knyazev and I. R. Slagle, J. Phys. Chem., 1996, 100, 5318 CrossRef CAS.
  43. F. P. Lossing, J. Am. Chem. Soc., 1977, 99, 7526 CrossRef CAS.
  44. J. C. Schultz, F. A. Houle and J. L. Beauchamp, J. Am. Chem. Soc., 1984, 106, 3917 CrossRef CAS.
  45. H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, J. Phys. Chem. Ref. Data, 1977, 6, Suppl. No. 1.
  46. O. Dobis and S. W. Benson, Int. J. Chem. Kinet., 1987, 19, 691 CrossRef CAS.
  47. L. Seres, 14th Int. Symp. On Gas Kinetics, University of Leeds, Leeds, 1996, abstract E22 Search PubMed.
  48. D. W. Stocker and M. J. Pilling, ref. 47, abstract F14.
Click here to see how this site uses Cookies. View our privacy policy here.