Structure and dynamics of hydrogen sorption in mesoporous MCM-41

(Note: The full text of this document is currently only available in the PDF Version )

Karen J. Edler, Phillip A. Reynolds, Peter J. Branton, Frans R. Trouw and John W. White


Abstract

Adsorption isotherms taken at temperatures ranging from 20 to 77 K show a large pore volume and surface area of 980 m2 g-1 for the physical adsorption of molecular hydrogen on MCM-41. The adsorbed hydrogen behaves more like a solid than a liquid and isosteric heats of adsorption reveal a heterogenous surface. The evaporation behaviour of the adsorbed hydrogen indicates that the hexagonally packed tubes in MCM-41 may be effectively interconnected into a single void space. Neutron inelastic scattering shows that molecular hydrogen exists in two sites in the pores of MCM-41. We designate as surface states those with a variety of weakly hindered rotational excitations centred at 11.8(2) meV and as bulk states, at high doping of H2, those which have narrow rotational excitations at 14.7(3) meV. These excitations are hardly changed from those of the free crystal in energy, energy width or momentum transfer dependence. Each type accounts for ca. 50% of the total pore volume. Strong hydrogen recoil scattering is also observed at momentum transfers above ca. 3 Å-1. Neutron diffraction from the filled sample at 1.9 K shows a single peak at 3.1 Å, characteristic of the H2–H2 correlations in bulk hydrogen. This peak is much weaker for the surface adsorbed species. The concentration dependence of this peak also shows a 1:1 division of void space between surface-adsorbed and bulk-like species. In addition we observe a separate peak at 14.38(3) Å, the hexagonal (21) of MCM-41 involving the silica framework, whose diffracted intensity changes dramatically with hydrogen doping, in a way inconsistent with a smooth walled, hexagonally packed mesopore. These data, together with previous X-ray diffraction data, provide information on silica density, absorbing surface and free volume projected onto the basal plane. The detail and complexity of the projection were unexpected. The data agree well with a model for which the silica in the walls is loosely interwoven, and occupies only 40% of the wall volume. The 35% silica surrounding the empty 7 Å hole as a 12.7 Å lining has a projected density of ca. 90% that of the walls. Either highly divided, ‘hairy’ walls or a structure like a highly defective variant of the MCM-48 structure would fit the data. The projection of smooth-walled but highly twisted channels onto a horizontal plane could give a density distribution equivalent to the highly porous silicate walls in straight channels.


References

  1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  2. K. J. Edler, P. A. Reynolds, J. W. White and D. Cookson, J. Chem. Soc., Faraday Trans., 1997, 93, 199 RSC.
  3. K. J. Edler, J. Dougherty, R. Durand, L. Iton, G. Kirton, G. Lockhart, Z. Wang, R. Withers and J. W. White, Colloid. Surf. A, 1995, 102, 213 CrossRef CAS.
  4. R. Ryoo and J. M. Kim, J. Chem. Soc., Chem. Commun., 1995, 711 RSC.
  5. K. J. Edler, P. A. Reynolds and J. W. White, unpublished results.
  6. K. J. Edler, P. A. Reynolds, F. Trouw and J. W. White, Chem. Phys. Lett., 1996, 249, 438 CrossRef CAS.
  7. E. W. Hansen, M. Stöcker and R. Schmidt, J. Phys. Chem., 1996, 100, 2195 CrossRef CAS.
  8. G. J. Kellogg, P. E. Sokol and J. W. White, in Momentum Distributions, ed. R. N. Silver and P. E. Sokol, Plenum Press, New York, 1990, vol. 351-354 Search PubMed.
  9. G. J. Kellogg, J. W. White, K. W. Herwig and P. E. Sokol, J. Chem. Phys., 1990, 93, 7153 CrossRef CAS.
  10. K. J. Edler and J. W. White, unpublished data.
  11. K. S. W. Sing, D. H. Everett, R. A. W. Haul, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603 CrossRef CAS.
  12. A. Keizer, T. Michalski and G. Findenegg, Pure Appl. Chem., 1991, 63, 1495 CAS.
  13. W. D. Machin, Langmuir, 1994, 10, 1235 CrossRef CAS.
  14. P. I. Ravikovitch, S. C. O. Domhnaill, A. V. Niemark, F. Schüth and K. K. Unger, Langmuir, 1995, 11, 4765 CrossRef CAS.
  15. S. Brunauer, P. H. Emmet and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  16. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 2nd edn., 1982 Search PubMed.
  17. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 75th edn., 1994 Search PubMed.
  18. P. J. Branton, P. G. Hall, M. Treguer and K. S. W. Sing, J. Chem. Soc., Faraday Trans., 1995, 91, 2041 RSC.
  19. P. Meehan, W. J. Stead and J. W. White, J. Chem. Soc., Faraday Trans. 2, 1988, 84, 1655 RSC.
  20. I. P. Jackson, J. McCaffrey, W. J. Stead and J. W. White, J. Chem. Soc., Faraday Trans. 2, 1988, 84, 1669 RSC.
  21. M. Neilson and W. D. Ellenson, Annu. Rep. Phys. Dept., A.E.K. Risø, Report no. 334, 1975, p. 44 Search PubMed.
  22. P. A. Egelstaff, Proc. Phys. Soc., 1966, 90, 681 Search PubMed.
  23. F. Fillaux, R. Papoular, A. Lautie, S. M. Bennington and J. Tomkinson, International Conference on Neutron Scattering, Sendai 1994 Search PubMed.
  24. J. A. Young and J. U. Koppel, Phys. Rev. A, 1964, 135, 603 CAS.
  25. E. W. Hansen, R. Schmidt, M. Stöcker and D. Akporiaye, J. Phys. Chem., 1995, 99, 4148 CrossRef CAS.
  26. R. J. Elliott and W. M. Hartmann, Proc. Phys. Soc., 1967, 90, 671 Search PubMed.
  27. M. Nielsen, Phys. Rev. B, 1973, 7, 1626 CrossRef CAS.
  28. R. L. Mills and A. F. Schuch, Phys. Rev. Lett., 1965, 15, 722 CrossRef CAS.
  29. V. Alfredsson, M. Keung, A. Monnier, G. D. Stucky, K. K. Unger and F. Schüth, J. Chem. Soc., Chem. Commun., 1994, 921 RSC.
  30. Q. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater., 1996, 8, 1147 CrossRef CAS.
  31. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141 CrossRef CAS.
  32. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Science, 1993, 261, 1299 CrossRef CAS.
  33. V. Luzzati, A. Tardieu, T. Gulik-Krzywicki, E. Rivas and F. Reiss-Husson, Nature (London), 1968, 220, 485 CrossRef CAS.
  34. K. Fontell, Colloid Polym. Sci., 1990, 268, 264 CAS.
  35. K. Fontell, Adv. Colloid Interface Sci., 1992, 41, 127 CrossRef CAS.
  36. L. Larsson, J. Phys. Chem., 1989, 93, 7304 CrossRef CAS.
  37. G. J. T. Tiddy, Phys. Rep., 1980, 57, 1 CrossRef CAS.
  38. P. Ekwall, L. Mandell and K. Fontell, J. Colloid Interface Sci., 1969, 29, 639 CrossRef CAS.
  39. J. Charvolin and J. F. Sadoc, Colloid Polym. Sci., 1990, 268, 190 CAS.
  40. G. D. Stucky, A. Monnier, F. Schüth, Q. Huo, D. Margolese, D. Kumar, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Mol. Cryst. Liq. Cryst., 1994, 240, 187 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.