Molar heat capacities of alkanolamines from 299.1 to 397.8 K Group additivity and molecular connectivity analyses

(Note: The full text of this document is currently only available in the PDF Version )

Yadollah Maham, Loren G. Hepler, Alan E. Mather, Andrew W. Hakin and Robert A. Marriott


Abstract

The molar heat capacities of 14 alkanolamine compounds have been measured at five separate temperatures in the range 299.1 to 397.8 K. These compounds were monoethanolamine (MEA), monomethylethanolamine (MMEA), dimethylethanolamine (DMEA), monoethylethanolamine (MEEA), diethylethanolamine (DEEA), n-propylethanolamine (n-PEA), diisopropylethanolamine (di-PEA), diethanolamine (DEA), methyldiethanolamine (MDEA), ethyldiethanolamine (EDEA), n-butyldiethanolamine(n-BDEA), tert-butyldiethanolamine (tert-BDEA), triethanolamine (TEA) and 2-amino-2-methylpropan-1-ol (AMP). Molar heat capacities of these compounds show a structural dependence, where the molar heat capacity of one molecule may be considered as the sum of various group contributions. Hence, the reported molar heat capacity data have been used as input to a group additivity analysis that yields estimates of CH2, OH, NH and N group contributions to molar heat capacities at each investigated temperature. The additivity principle has been explored in more detail by using molecular connectivity indexes to obtain a simple five-term equation that models the molar heat capacities of the investigated alkanolamines over the entire experimental temperature range.


References

  1. Kirk-Othmer, Encyclopedia of Chemical Technology, Wiley, New York, 4th edn., 1992, vol. 2 Search PubMed.
  2. Y. Maham, T. T. Teng, L. G. Hepler and A. E. Mather, J. Solution Chem., 1994, 23, 195 CrossRef CAS.
  3. Y. Maham, T. T. Teng, A. E. Mather and L. G. Hepler, Can. J. Chem., 1995, 73, 1514 CAS.
  4. T. T. Teng, Y. Maham, L. G. Hepler and A. E. Mather, J. Chem. Eng. Data, 1994, 39, 290 CrossRef CAS.
  5. A. W. Hakin, M. M. Duke, J. L. Marty and K. E. Preuss, J. Chem. Soc., Faraday Trans., 1994, 90, 2027 RSC.
  6. L. B. Kier and L. H. Hall, Molecular Connectivity in Structure–Activity Analysis, Wiley, Research Studies Press, Letchworth, 1986 Search PubMed.
  7. Y. Xu, Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada, 1990.
  8. Y. Xu and L. G. Hepler, J. Chem. Thermodyn., 1993, 25, 91 CrossRef CAS.
  9. E. S. Domalski, W. H. Evans and E. D. Hearing, J. Phys. Chem. Ref. Data, 1984, 13, suppl. no. 1.
  10. Selected Values of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Thermodynamic Research Center, Texas A&M University, College Station, Texas, 1979, Table 23-2 (1–205), 1 Search PubMed.
  11. J. F. Messerly, G. B. Guthrie, S. S. Todd and H. L. Finke, J. Chem. Eng. Data, 1967, 12, 338 CrossRef CAS.
  12. J.-P. E. Grolier, A. Inglese and E. Wilhelm, J. Chem. Thermodyn., 1984, 16, 67 CrossRef CAS.
  13. G. N. Lewis and M. Randall, Thermodynamics, rev. K. S. Pitzer and L. Brewer, McGraw-Hill, New York, 2nd edn., 1961 Search PubMed.
  14. The Alkanolamines Handbook, The Dow Chemical Company, USA, 1981, 3 Search PubMed.
  15. J. J. Spitzer, S. K. Suri and R. H. Wood, J. Solution Chem., 1985, 14, 571 CrossRef CAS.
  16. S. K. Suri and R. H. Wood, J. Solution Chem., 1986, 15, 705 CrossRef CAS.
  17. M. J. Blandamer, J. Burgess, M. R. Cottrell and A. W. Hakin, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 3039 RSC.
  18. L. Pogliani, J. Phys. Chem., 1993, 97, 6731 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.