Unusual behaviour of thiocyanato complexation with copper(II) and zinc(II) ions in micellar solutions of a non-ionic surfactant Triton X-100

(Note: The full text of this document is currently only available in the PDF Version )

Yasuhiro Umebayashi, Yuzuru Nagahama and Shin-ichi Ishiguro


Abstract

Complexation of copper(II) and zinc(II) with thiocyanate ions has been studied by precise titration spectrophotometry and calorimetry in aqueous solution containing varying concentrations (0–100 mmol dm-3) of a non-ionic surfactant Triton X-100 at 25°C. Both spectrophotometric and calorimetric data were analysed by treating the surfactant as the third component, and the complexes formed in aqueous and micellar pseudo phases were distinguished. In the case of zinc(II), the formation of [Zn(NCS)]+ and [Zn(NCS)3]- in the aqueous phase and [Zn(NCS)3Y]- and [Zn(NCS)4Y]2- (Y=Triton X-100) in the micellar phase was established, and their formation constants, enthalpies and entropies obtained. On the other hand, with copper(II), the formation of [Cu(NCS)]+, [Cu(NCS)2] and [Cu(NCS)2Y] was established, and their formation constants and intrinsic electronic spectra were extracted. As the complexation behaviour in a micellar solution might be compared with that in a non-aqueous solution, the complexation for the CuII–NCS- system was also studied in N,N-dimethylformamide. The difference in the complexation of copper(II) and zinc(II) ions in the micellar solution is discussed from thermodynamic and structural viewpoints.


References

  1. R. J. Robson and E. A. Dennis, J. Phys. Chem., 1974, 81, 1075.
  2. W. L. Hinze and E. Pramauro, CRC Crit. Rev. Anal. Chem., 1993, 24, 133 Search PubMed.
  3. T. Sotobayashi, T. Suzuki and K. Yamada, Chem. Lett., 1976, 77 CAS.
  4. T. Sotobayashi, T. Suzuki and S. Tomouchi, Chem. Lett., 1976, 585 CAS.
  5. T. Sotobayashi, T. Suzuki and H. Kudo, J. Radioanal. Chem., 1977, 36, 145 CAS.
  6. T. Sotobayashi, T. Hashimoto and H. Kudo, Radiochem. Radioanal. Lett., 1978, 36, 1 Search PubMed.
  7. T. Suzuki, N. Murakami and T. Sotobayashi, Bull. Chem. Soc. Jpn., 1980, 53, 1453 CAS.
  8. T. Okada, Anal. Chem., 1992, 64, 2138 CrossRef CAS.
  9. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem., 1984, 56, 111 CrossRef CAS.
  10. S. Ishiguro, T. Sotobayashi, K. Satoh and K. Saito, Inorg. Chem., 1988, 27, 1152 CrossRef CAS.
  11. Y. Umebayashi and S. Ishiguro, J. Solution Chem., 1996, 25, 731 CrossRef CAS.
  12. S. Ishiguro and K. Ozutsumi, Inorg. Chem., 1990, 29, 1117 CrossRef CAS.
  13. S. Ishiguro, M. Miyauchi and K. Ozutsumi, J. Chem. Soc., Dalton Trans., 1990, 2035 RSC.
  14. H. Suzuki, Doctoral Thesis, Tokyo Institute of Technology, Tokyo, 1989.
  15. D. W. Marquardt, J. Soc. Ind. Appl. Math., 1963, 11, 431 Search PubMed.
  16. S. Ishiguro, K. Yamamoto and H. Ohtaki, Anal. Sci., 1985, 1, 263 CAS.
  17. S. Ahrland, Pure Appl. Chem., 1979, 51, 2019 CAS.
  18. R. M. Smith and A. E. Martell, Critical Stability Constants, Plenum, New York, 1976, vol. 4 Search PubMed.
  19. Stability Constants of Metal-Ion Complexes, ed. E. Högfeldt, IUPAC Chemical Data Series, No. 21, Pergamon, Oxford, 1982 Search PubMed.
  20. G. M. Arcand and W. R. Carroll, J. Phys. Chem., 1962, 66, 1014 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.