Semiconductive and redox properties of V2O5/TiO2 catalysts

(Note: The full text of this document is currently only available in the PDF Version )

Jean-Marie Herrmann, Jean Disdier, Goutam Deo and Israel E. Wachs


Abstract

The dc electrical conductivities of a series of V2O5/TiO2 samples were measured at 250°C and observed to be sensitive to the V2O5 loadings: 1, 2, 3, 4 and 6 V2O5 wt.% corresponding to 0.9, 1.8, 2.65, 3.5 and 5.3 V atom%. Up to 3% V2O5 loading (half monolayer), the electrical conductivity, slightly but constantly, increased whereas, for [greater than or equal, slant]4% vanadium oxide loading, the electrical conductivity increased dramatically by over one order of magnitude. It was concluded that, for low vanadia loadings, well dispersed fractions of a monolayer could be obtained with a better dispersion than that of Eurocat ones, previously studied with the same technique. It appears that the electrical conductivity provides a sensitive method to determine the total amount of V5+ ions incorporated in titania during the preparative calcination. In situ measurements of the electrical conductivity during oxygen and methanol cycles suggest that methanol reduces both vanadia and titania. Reduction by the introduction of methanol strongly increases the electrical conductivity of the samples, whereas oxygen decreases the conductivity to the original value. The reproducible conductivity levels indicate the reversible redox process occurring during the exposure of the samples to methanol (reduction) and to oxygen (oxidation). No quantitative relationship exists, between the amounts of dissolved V5+ ions detected by the variations in electrical conductivity and the methanol oxidation activity, for this series of V2O5/TiO2 samples. TiO2 appears as a reducible, non-inert support in electronic interaction with supported V2O5.


References

  1. S. Matsuda and A. Kato, Appl. Catal., 1983, 8, 149 CrossRef CAS.
  2. P. J. Gellings, in Specialist Periodical Reports-Catalysis, ed. G. C. Bond and G. Webb, Royal Society of Chemistry, London, 1985, vol. 7, p. 105 Search PubMed.
  3. G. C. Bond and S. F. Tahir, Appl. Catal., 1991, 71, 1 CrossRef CAS.
  4. H. Hirashima, K. Nishii and T. Yoshida, J. Am. Ceram. Soc., 1983, 66, 704 CAS.
  5. H. Hirashima and S. Kamimura, Mater. Res. Soc. Sym. Proc., 1988, 121, 779 CAS.
  6. D. J. Dole, C. F. Cullis and D. J. Hucknall, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 2185 RSC.
  7. R. B. Bjorklund, C. U. I. Odenbrand, J. G. M. Brandin, L. A. H. Anderson and B. Liedberg, J. Catal., 1989, 119, 187 CrossRef CAS.
  8. R. B. Bjorklund, L. A. H. Anderson, C. U. I. Odenbrand, L. Sjöqvist and A. Lund, J. Phys. Chem., 1992, 96, 10953 CrossRef CAS.
  9. J. M. Herrmann and J. Disdier, Catal. Today, 1994, 20, 135 CrossRef CAS.
  10. P. Ciambelli, L. Lisi, G. Russo and J. C. Volta, Appl. Catal. B, 1995, 7, 1 CrossRef CAS.
  11. G. Deo, I. E. Wachs and J. Haber, Crit. Rev. Surf. Chem., 1994, 4, 141 Search PubMed.
  12. F. Roozeboom, P. D. Cordingley and P. J. Gellings, J. Catal., 1981, 68, 464 CrossRef CAS.
  13. J. M. Tatibouet, J. E. Germain and J. C. Volta, J. Catal., 1983, 82, 240 CrossRef CAS.
  14. C. Louis, J. M. Tatibouet and M. Che, J. Catal., 1988, 109, 354 CrossRef CAS.
  15. G. Deo and I. E. Wachs, J. Catal., 1991, 129, 307 CrossRef CAS.
  16. G. Deo and I. E. Wachs, J. Catal., 1994, 146, 323, 335.
  17. J. M. Herrmann, in Catalyst Characterization, Physical Techniques for Solid Materials, ed. B. Imelik and J. C. Védrine, Plenum Press, New York, 1994, ch. 20, p. 559 Search PubMed.
  18. I. E. Wachs, G. Deo, M. A. Vuurman, H. Hu, D. S. Kim and J. M. Jehng, J. Mol. Catal., 1993, 82, 443 CrossRef CAS.
  19. A. Ovenston and J. R. Walls, J. Phys. D, 1985, 18, 1850 Search PubMed and references therein.
  20. A. Ammi, D. Bideau, J. P. Treoadec, F. Ropital and G. Thomas, Solid State Commun, 1985, 55, 1 CrossRef.
  21. L. A. Abramova, A. A. Dulov and S. P. Baranov, J. Phys. Chem. Solids, 1994, 55, 373 CrossRef CAS.
  22. J. C. Volta, P. Bussière, G. Coudurier, J. M. Herrmann and J. C. Védrine, Appl. Catal., 1985, 16, 315 CrossRef CAS.
  23. J. M. Herrmann and P. Pichat, J. Catal., 1982, 78, 425 CrossRef CAS.
  24. J. Disdier, J. M. Herrmann and P. Pichat, J. Chem. Soc., Faraday Trans. 1, 1983, 79, 651 RSC.
  25. J. M. Herrmann, J. L. Portefaix, M. Forissier, F. Figueras and P. Pichat, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 1346 RSC.
  26. J. M. Herrmann, M. Rosa Nunes and M. A. da Costa, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 1983 RSC.
  27. E. J. W. Verwey, P. W. Haijman, F. C. Romeijn and G. W. Van Oosterhout, Philips Res. Rep., 1950, 5, 173 Search PubMed.
  28. I. E. Wachs, J. Catal., 1990, 124, 570 CrossRef CAS.
  29. I. E. Wachs, G. Deo, D. S. Kim, M. A. Vuurman and H. Hu, Stud. Surf. Sci. Catal., 1993, 75, 543 CAS.
  30. Eurocat oxide, Catal. Today, 1994, 20 Search PubMed.
  31. S. R. Morrison, J. Catal., 1974, 34, 462 CrossRef CAS.
  32. K. Kimoto and S. R. Morrison, Z. Phys. Neue Folge, 1977, 108, 11 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.