Effect of molecular weight on the interactions between poly(ethylene oxide) layers adsorbed to glass surfaces

(Note: The full text of this document is currently only available in the PDF Version )

Gavin J. C. Braithwaite and Paul F. Luckham


Abstract

We have investigated the adsorption of poly(ethylene oxide) (PEO) of molecular weights 56000, 205000, 685000 onto glass surfaces using a development of the atomic force microscope technique. In this method a glass particle is glued to a silicon cantilever to give a particle probe surface forces apparatus. Data are presented for the polymers adsorbed onto one and two surfaces at low and high coverage of adsorbed polymer. In the case of polymers adsorbed onto one surface a strong adhesion is noted on separation of the surfaces. This is due to PEO being pulled off the glass surface on separation. Similar effects are also observed when the polymer is adsorbed onto both surfaces at low surface coverage of polymer. However, rarely is any attraction noted as the surfaces are brought together. This is a consequence of the rapid rate of approach in this method not allowing sufficient time for polymer rearrangement and adsorption to occur. At high coverage of polymer on both surfaces repulsive steric interactions were observed. The range of these interactions increased with the molecular weight of the adsorbed polymer, such that the adsorbed layer thickness δ scales roughly with the molecular weight M through a power law with exponent 0.4.


References

  1. D. M. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, Cambridge, 1992 Search PubMed.
  2. D. Collins, The Human Revolution: From Ape to Artist, Phaidon Press Ltd., London, 1976 Search PubMed.
  3. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 1987, vol. 1 Search PubMed.
  4. D. H. Napper, Polymeric Stabilisation of Colloidal Dispersions, Academic Press, London, 1983 Search PubMed.
  5. J. Klein and P. F. Luckham, Nature (London), 1982, 300, 429 CrossRef CAS.
  6. J. Klein and P. F. Luckham, Macromolecules, 1984, 17, 1041 CrossRef CAS.
  7. J. Klein and P. F. Luckham, Nature (London), 1984, 308, 836 CrossRef CAS.
  8. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 1986, 56, 930 CrossRef.
  9. W. A. Ducker, T. J. Senden and R. M. Pashley, Nature (London), 1991, 353, 239 CrossRef CAS.
  10. W. A. Ducker, T. J. Senden and R. M. Pashley, Langmuir, 1992, 8, 1831 CrossRef CAS.
  11. V. S. J. Craig, A. M. Hyde and R. M. Pashley, Langmuir, 1996, 12, 3557 CrossRef CAS.
  12. S. Biggs and T. W. Healy, J. Chem. Soc., Faraday Trans., 1994, 90, 3415 RSC.
  13. G. J. C. Braithwaite, P. F. Luckham and A. M. Howe, Langmuir, 1996, 12, 4224 CrossRef CAS.
  14. G. Meyer and N. M. Amer, Appl. Phys. Lett., 1988, 53, 1045 CrossRef.
  15. J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, Rev. Sci. Instrum., 1993, 64, 403 CrossRef CAS.
  16. J. N. Israelachvili and G. E. Adams, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 975 RSC.
  17. B. V. Derjaguin, Kolloid Z., 1934, 69, 155 Search PubMed.
  18. P.-G. De Gennes, Macromolecules, 1982, 15, 492 CrossRef CAS.
  19. P.-G. De Gennes, Adv. Colloid Interface Sci., 1987, 27, 189 CrossRef CAS.
  20. G. J. Fleer, J. M. H. M. Scheutjens and M. A. Cohen Stuart, Colloids Surf., 1988, 31, 1 CrossRef CAS.
  21. J. M. H. M. Scheutjens and G. J. Fleer, Macromolecules, 1985, 18, 1882 CrossRef CAS.
  22. H. J. Taunton, C. Toprakcioglu, L. J. Fetters and J. Klein, Macromolecules, 1990, 23, 571 CrossRef CAS.
  23. P. F. Luckham and J. Klein, Macromolecules, 1984, 18, 721.
  24. J. Klein and P. F. Luckham, Macromolecules, 1986, 19, 2007 CrossRef CAS.
  25. G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove and B. Vincent, Polymers at Interfaces, Chapman and Hall, London, 1993 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.