The mechanism of current-doubling reactions at ZnO photoanodes

(Note: The full text of this document is currently only available in the PDF Version )

G. H. Schoenmakers, D. Vanmaekelbergh and J. J. Kelly


Abstract

The mechanism of photocurrent-doubling reactions at ZnO single-crystal electrodes in aqueous formate, tartrate and methanol solutions has been reinvestigated. On the basis of steady-state photocurrent measurements in a wide range of light intensity it is concluded that, in the case of formate and tartrate, the electron-injecting species arises from a reaction between the current-doubling agent and oxygen, formed in the photoanodic decomposition of ZnO. This is not the case for methanol. These conclusions are supported by the results of electrical impedance and intensity-modulated photocurrent spectroscopy measurements.


References

  1. T. Freund and S. R. Morrison, Surf. Sci., 1968, 9, 119 CrossRef CAS.
  2. W. P. Gomes, T. Freund and S. R. Morrison, J. Electrochem. Soc., 1968, 115, 818 CAS.
  3. R. Memming, J. Electrochem. Soc., 1969, 116, 785 CAS.
  4. J. Li, R. Peat and L. M. Peter, J. Electroanal. Chem., 1986, 200, 333 CrossRef CAS.
  5. I. E. Vermeir, H. H. Goossens, F. V. Vandenkerchove and W. P. Gomes, J. Electrochem. Soc., 1992, 139, 1389 CAS.
  6. A. Manivannan, A. Fujishima and G. V. Subba Rao, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 1522 Search PubMed.
  7. J. J. Kelly, B. P. Minks, N. A. M. Verhaegh, J. Stumper and L. M. Peter, Electrochim. Acta, 1992, 37, 909 CrossRef CAS.
  8. S. R. Morrison, in Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980, 6 Search PubMed.
  9. J. van de Ven and H. J. P. Nabben, J. Electrochem. Soc., 1990, 137, 1603 CAS.
  10. P. H. L. Notten, J. E. A. M. van den Meerakker and J. J. Kelly, in Etching of III–V Semiconductors: An Electrochemical Approach, Elsevier, Oxford, 1991 Search PubMed.
  11. J. R. Harbour and M. L. Hair, J. Phys. Chem., 1979, 83, 652 CrossRef CAS.
  12. A. Fujishima, T. Kato, E. Maekawa and K. Honda, Bull. Chem. Soc. Jpn., 1981, 54, 1671 CAS.
  13. Ref. 8, section 6.3.
  14. F. Cardon and W. P. Gomes, J. Electroanal. Chem., 1983, 144, 135 CrossRef CAS.
  15. Y. Maeda, A. Fujishima and K. Honda, J. Electrochem. Soc., 1981, 128, 1731 CAS.
  16. R. R. Pradhananga and K. Jüttner, Electrochim. Acta, 1987, 32, 557 CrossRef CAS.
  17. P. Herasti and L. M. Peter, J. Electroanal. Chem., 1991, 305, 241 CrossRef.
  18. G. H. Schoenmakers, D. Vanmaekelbergh and J. J. Kelly, J. Phys. Chem., 1996, 100, 3215 CrossRef.
  19. D. Vanmaekelbergh and W. P. Gomes, J. Phys. Chem., 1990, 94, 1571 CrossRef CAS.
  20. A. R. de Wit, D. Vanmaekelbergh and J. J. Kelly, J. Electrochem. Soc., 1992, 139, 2508 CAS.
  21. I. E. Vermeir, W. P. Gomes, B. H. Erné and D. Vanmaekelbergh, Electrochim. Acta, 1993, 38, 2569 CrossRef CAS.
  22. R. Peat and L. M. Peter, J. Electroanal. Chem., 1986, 209, 307 CrossRef CAS.
  23. T. Inoue, A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn., 1979, 52, 3217 CAS.
  24. H. Gerischer and N. Sorg, Electrochim. Acta, 1992, 37, 827 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.