Quantum dynamics of molecular photodesorption from metal surfaces

(Note: The full text of this document is currently only available in the PDF Version )

David A. Micha and Zhigang Yi


Abstract

We develop a theory of desorption of molecules from metal surfaces following absorption of visible or UV light pulses, based on the separation of the system into primary and secondary regions. Our approach introduces the Liouville–von Neumann equation for the density operator and derives from it the effective equations for the two coupled regions, assuming a self-consistent factorization of the density operator. The secondary region is described as a stochastic medium providing energy dissipation during the desorption. Direct and indirect desorption mechanisms are considered, with the latter derived from a local electromagnetic field which excites the metal substrate electron–hole excitations following which the adsorbate bond is broken. A model is introduced and solved for CO adsorbed on Cu(001). Results for the survival probability of adsorbed CO following absorption of a light pulse suggest, by comparison with experiment, that an enhanced transition dipole must be formed in the primary region.


References

  1. Desorption Induced by Electronic Transitions DIET I, ed. N. H. Tolk, M. M. Traum, J. C. Tully and T. E. Madey, Springer-Verlag, New York, 1983 Search PubMed.
  2. M. C. Lin and G. Ertl, Annu. Rev. Phys. Chem., 1986, 37, 587 CrossRef CAS.
  3. P. Avouris and R. E. Walkup, Annu. Rev. Phys. Chem., 1989, 40, 173 CrossRef CAS.
  4. (a) D. S. King and R. R. Cavanagh, Adv. Chem. Phys., 1989, 76, 45 CAS; (b) R. R. Cavanagh, D. S. King, J. C. Stephenson and T. F. Heinz, J. Phys. Chem., 1993, 97, 7869.
  5. Faraday Discuss., 1993, 96 Search PubMed.
  6. (a) J. W. Gadzuk, L. J. Richter, S. A. Buntin, D. S. King and R. R. Cavanagh, Surf. Sci., 1990, 235, 317 CrossRef CAS; (b) J. W. Gadzuk, Phys. Rev. B, 1991, 44, 13466 CrossRef; (c) J. W. Gadzuk, in Femtosecond Chemistry, ed. J. Manz and L. Woeste, VCH, New York, 1995, vol. 2, p. 603 Search PubMed.
  7. D. M. Newns, T. F. Heinz and J. A. Misewich, Progr. Theor. Phys. Suppl., 1991, 106, 411 Search PubMed.
  8. (a) B. Fain and S. H. Lin, Chem. Phys., 1992, 161, 515 CrossRef CAS; (b) B. Fain, S. H. Lin, J. Grotemeyer and E. W. Schlag, Chem. Phys. Lett., 1993, 302, 357 CrossRef.
  9. (a) J. C. Tully, M. Gomez and M. Head-Gordon, J. V ac. Sci. Technol. A, 1993, 11, 1914 CrossRef CAS; (b) C. Springer, M. Head-Gordon and J. C. Tully, Surf. Sci., 1994, 320, L57 CrossRef CAS; (c) M. Head-Gordon and J. C. Tully, J. Chem. Phys., 1995, 103, 10137 CrossRef CAS.
  10. F. M. Zimmerman and W. Ho, J. Chem. Phys., 1994, 100, 7700 CrossRef.
  11. (a) P. Saalfrank, R. Baer and R. Kosloff, Chem. Phys. Lett., 1994, 230, 463 CrossRef CAS; (b) P. Saalfrank and R. Kosloff, J. Chem. Phys., 1996, 105, 2441 CrossRef.
  12. (a) H. Guo, Chem. Phys. Lett., 1995, 240, 393 CrossRef CAS; (b) L. Liu, H. Guo and T. Seideman, J. Chem. Phys., 1996, 104, 8757 CrossRef CAS.
  13. J. A. Prybyla, T. F. Heinz, J. A. Misewich, M. M. T. Loy and J. H. Glownia, Phys. Rev. Lett., 1990, 64, 1537 CrossRef CAS.
  14. F. Budde, T. F. Heinz, M. M. T. Loy, J. A. Misewich, F. de Rougemont and H. Zacharias, Phys. Rev. Lett., 1991, 66, 3024 CrossRef CAS.
  15. J. A. Prybyla, H. W. K. Tom and G. D. Aumiller, Phys. Rev. Lett., 1992, 68, 503 CrossRef CAS.
  16. R. R. Cavanagh, D. S. King, J. C. Stephenson and T. F. Heinz, J. Phys. Chem., 1993, 97, 786 CrossRef CAS.
  17. T. A. Germer, J. C. Stephenson, E. J. Heilweil and R. R. Cavanagh, J. Chem. Phys., 1994, 101, 1 CrossRef CAS.
  18. F.-J. Kao, D. G. Busch, D. Cohen, D. Gomes da Costa and W. Ho, Phys. Rev. Lett., 1993, 71, 2094 CrossRef CAS.
  19. E. Hasselbrink, in Laser Spectroscopy and Photochemistry on Metal Surfaces, ed. H. L. Dai and W. Ho, World Scientific, Singapore, in the press Search PubMed.
  20. T. Hertel, M. Wolf and G. Ertl, J. Chem. Phys., 1995, 102, 4314 CrossRef CAS.
  21. J. A. Misewich, T. F. Heinz and D. M. Newns, Phys. Rev. Lett., 1992, 68, 3737 CrossRef CAS.
  22. M. Brandbyge, P. Hedegard, T. F. Heinz, J. A. Misewich and D. M. Newns, Phys. Rev. B, 1995, 52, 6042 CrossRef CAS.
  23. D. A. Micha and D. Srivastava, Chem. Phys. Lett., 1989, 162, 376 CrossRef CAS.
  24. D. Srivastava and D. A. Micha, J. Chem. Phys., 1991, 94, 4900 CrossRef CAS.
  25. D. Srivastava and D. A. Micha, J. Chem. Phys., 1991, 95, 380 CrossRef CAS.
  26. D. Beksic and D. A. Micha, J. Chem. Phys., 1995, 103, 3795 CrossRef CAS.
  27. Z.-G. Yi, D. Beksic and D. A. Micha, Int. J. Quantum Chem., 1997, in the press Search PubMed.
  28. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970 Search PubMed.
  29. M. C. Zerner, in Review of Computational Chemistry, ed. K. B. Lipkowitz and D. B. Boyd, VCH Publishing, New York, 1991, vol. II, pp. 313–366 Search PubMed.
  30. M. C. Zerner, in Metal–Ligand Interactions, ed. N. Russo and D. R. Salahub, Kluwer, Dordrecht, 1992, pp. 493–531 Search PubMed.
  31. M. D. Feit, J. A. Fleck and A. Steiger, J. Comput. Phys., 1982, 47, 412 CrossRef CAS.
  32. C. Leforestier et al., J. Comput. Phys., 1991, 94, 59 CrossRef.
  33. S. Andersson and J. B. Pendry, Phys. Rev. Lett., 1979, 43, 363 CrossRef CAS.
  34. J. C. Tracy, J. Chem. Phys., 1972, 56, 2748 CrossRef CAS.
  35. C. J. Hirschmugl, G. P. Williams, F. M. Hoffman and Y. J. Chabal, Phys. Rev. Lett., 1990, 65, 480 CrossRef CAS.
  36. J. Ellis, G. Witte and J. P. Toennies, J. Chem. Phys., 1995, 102, 5059 CrossRef CAS.
  37. T. A. Germer, J. C. Stephenson, E. J. Heilweil and R. R. Cavanagh, J. Chem. Phys., 1994, 101, 1704 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.