Surface chemistry of V–Sb–oxide in relation to the mechanism of acrylonitrile synthesis from propane Part 3.—Influence of ammonia on the competitive pathways of reaction

(Note: The full text of this document is currently only available in the PDF Version )

Gabriele Centi and Siglinda Perathoner


Abstract

The effect of ammonia chemisorption on the surface reactivity of V–Sb–oxide catalysts with Sb/V=1.0 and the role of ammonia adspecies on the pathways of propane conversion to acrylonitrile are discussed in this third part of a series of three articles on the surface chemistry and reactivity of V–Sb–oxides for the synthesis of acrylonitrile from propane. Ammonia chemisorbed on Lewis-acid sites inhibits the activation of propane differently from that chemisorbed on Brønsted-acid sites, and the two ammonia adspecies play different roles in the further mechanism of transformation of the chemisorbed intermediates to acrylonitrile. Ammonium ions react with acrylate species to give acrylonitrile via acrylamine intermediates, whereas activated ammonia species formed by heterolytic splitting of coordinated NH3 react with an allyl alcoholate intermediate to give an acrylimine adspecies further transformed to acrylonitrile. The second route is faster than the first. The conversion of Brønsted sites to ammonium ions by reaction with ammonia inhibits their negative action in catalysing side-reactions which decrease the selectivity to acrylonitrile. In particular, Brønsted-acid sites catalyse (i) a carbon chain degradation pathway leading to C1 and C2 species and (ii) the hydrolysis of an amide species, formed by reaction of ammonium ions with acrylate adspecies, with formation of free, weakly chemisorbed acrylic acid, the latter is probably an intermediate to the formation of carbon oxides. The overall reaction network in propane ammoxidation is also discussed with particular attention directed to the presence of multiple pathways of reaction from propane to acrylonitrile characterized by different rates and intrinsic selectivities.


References

  1. G. Centi, S. Perathoner and F. Trifirò, Appl. Catal. A., 1996, in the press Search PubMed.
  2. F. Trifirò and F. Cavani, Selective Partial Oxidation of Hydrocarbons, Catalytica Studies nr. 4193 SO, Catalytica, Mountain View, CA, 1994 Search PubMed.
  3. G. Centi, F. Marchi and S. Perathoner, J. Chem. Soc., Faraday Trans., 1996, 5141; 5151 RSC.
  4. G. Centi and S. Perathoner, Appl. Catal. A, 1995, 124, 317 CrossRef CAS.
  5. G. Centi and F. Marchi, in 11th International Congress of Catalysis 40th Anniversary, Baltimore, ed. J. W. Hightower, W. N. Delgass, E. Iglesia and A. T. Bell, Elsevier Science, Amsterdam 1996, vol. A, p. 277 Search PubMed.
  6. G. Centi, F. Marchi and S. Perathoner, Appl. Catal. A, 1996, in the press Search PubMed.
  7. G. Centi and P. Mazzoli, Catal. Today, 1996, 28, 351 CrossRef CAS.
  8. G. Centi and S. Perathoner, in Preparation of Catalysts VI, ed. G. Poncelet, J. Martens, B. Delmon, P. A. Jacobs and P. Grange, Elsevier Science, Amsterdam, 1995, p. 59 Search PubMed.
  9. V. Sanchez Escribano, G. Busca and V. Lorenzelli, J. Phys. Chem., 1990, 94, 8939 CrossRef.
  10. A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on Surface of Transition Metal Oxides, ed. C. H. Rochester, Wiley, New York, 1990 Search PubMed.
  11. W. R. Feairheller and J. E. Katon, Spectrochim. Acta, Part A, 1967, 23, 2225 CrossRef CAS.
  12. H. Knözinger, H. Krietenbrik, H. D. Muller and W. Schulz, in Proceedings, 6th International Congress on Catalysis, ed. G. C. Bond and P. B. Wells, The Chemical Society, London, 1976, vol. 1, p. 183 Search PubMed.
  13. P. J. Chong and G. Curthoys, J. Chem. Soc., Faraday Trans 1, 1981, 77, 1639 RSC.
  14. G. Busca, G. Ramis and V. Lorenzelli, J. Mol. Catal., 1989, 55, 1 CrossRef CAS.
  15. R. M. Silverstein, C. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds, J. Wiley and Sons, New York, 4th edn., ch. 3 Search PubMed.
  16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, 1986 Search PubMed.
  17. D. Lin-vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, Handbook of Infrared and Raman characteristic frequencies of organic molecules, Academic Press, San Diego, 1991 Search PubMed.
  18. G. Centi, in Elementary Reaction Steps in Heterogeneous Catalysis(NATO ASI Series, vol. 398), ed. R. W. Joyner and R. A. van Santen, Kluwer Academic Press, Dordrecht, 1993, p. 93 Search PubMed.
  19. V. D. Sokolovskii, A. A. Davydov and O. Yu. Ovsitser, Catal. Rev. Sci. Eng., 1995, 37, 425 Search PubMed.
  20. R. Catani, G. Centi, F. Trifirò and R. K. Grasselli, Ind. Eng. Chem. Res., 1992, 31, 107 CrossRef CAS.
  21. R. Nilsson, T. Lindblad and A. Andersson, J. Catal., 1994, 148, 501 CrossRef CAS.
  22. G. Centi and F. Trifirò, Appl. Catal., 1984, 12, 1 CrossRef CAS.
  23. J. B. Hendrickson, P. J. Cram and G. S. Hammond, Organic Chemistry, 3rd edn., McGraw-Hill, New York, 1970 Search PubMed.
  24. J. D. Burrington, C. T. Kartisek and R. K. Grasselli, J. Catal., 1984, 87, 363 CrossRef CAS.
  25. R. K. Grasselli and J. F. Brazdil, in Proceedings, 8th International Congress on Catalysis, Dechema, Frankfurt AM, 1984, vol. V, p. 369 Search PubMed.
  26. R. K. Grasselli and J. D. Burrington, Adv. Catal., 1981, 30, 133 CAS.
  27. G. Centi, Catal. Lett., 1993, 22, 53 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.