Long-range electron-transfer reaction rates to cytochrome c across long- and short-chain alkanethiol self-assembled monolayers: Electroreflectance studies

(Note: The full text of this document is currently only available in the PDF Version )

Zhi Qiang Feng, Shinichiro Imabayashi, Takashi Kakiuchi and Katsumi Niki


Abstract

The kinetics of electron transfer (ET) between cytochrome c and a gold (111) electrode through self-assembled monolayers of alkanethiols with terminal carboxylic acid groups, COOH(CH2)nSH, have been studied for n=2–11 using an ac potential-modulated UV–VIS reflectance spectroscopic technique (electroreflectance spectroscopy, ER). For 9⩽n⩽11, the standard ET rate constant, kapp, depends exponentially on the chain lengths and the exponential decay factor is 1.09 per methylene group; for n<9, however, kapp deviates from the exponential plot. The ET reaction through short-chain alkanethiol monolayers is controlled by the preceding chemical reaction. The rate-controlling step is very likely to be the reorganization of cytochrome c to the favourable conformation for the ET reaction. The ET reaction rate constant from cytochrome c in the favourable conformation to the electrode surface obeys Marcus theory for long-range ET. The ET reaction through long-chain alkanethiol monolayers is controlled by the ET rate through alkanethiols.


References

  1. T. T.-T. Li and M. J. Weaver, J. Am. Chem. Soc., 1984, 106, 6107 CrossRef CAS.
  2. H. O. Finklea and D. D. Hanshew, J. Am. Chem. Soc., 1992, 114, 3173 CrossRef CAS.
  3. C. E. D. Chidsey, Science, 1991, 251, 919 CrossRef CAS.
  4. C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski and A. M. Mujsce, J. Am. Chem. Soc., 1990, 112, 4301 CrossRef CAS.
  5. H. O. Finklea, M. S. Ravenscroft and D. A. Snider, Langmuir, 1993, 9, 223 CrossRef CAS.
  6. H. O. Finklea and M. S. Ravenscroft, J. Phys. Chem., 1994, 98, 3843 CrossRef CAS.
  7. J. N. Richardson, S. R. Peck, L. S. Curtin, L. M. Tender, R. H. Terrill, M. T. Carter and R. W. Murray, J. Phys. Chem., 1995, 99, 766 CrossRef CAS.
  8. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265 CAS.
  9. C. Miller, P. Cuendet and M. Grätzel, J. Phys. Chem., 1991, 95, 877 CrossRef CAS.
  10. A. M. Becka and C. J. Miller, J. Phys. Chem., 1992, 96, 2657 CrossRef CAS.
  11. J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey, M. R. Linford, M. D. Newton and Y.-P. Liu, J. Phys. Chem., 1995, 99, 13141 CrossRef CAS.
  12. S. Song, R. A. Clark, E. F. Bowden and M. J. Tarlov, J. Phys. Chem., 1993, 97, 6564 CrossRef CAS.
  13. R. A. Clark, T. M. Nahir and E. F. Bowden, The Electrochemical Society Meeting, Reno, Nevada, May 21–26, 1995, extended abstract, p. 953.
  14. Prof. E. F. Bowden, personal communication.
  15. Z. Q. Feng, S. Imabayashi, T. Kakiuchi and K. Niki, J. Electroanal. Chem., 1995, 394, 149 CrossRef CAS.
  16. Z. Q. Feng, T. Sagara and K. Niki, Anal. Chem., 1995, 67, 3564 CrossRef CAS.
  17. D. L. Brautigan, S. Fergason-Miller and E. Margoliash, Methods Enzymol., 1978, 33.
  18. E. B. Troughto, C. D. Bain, G. H. Whitesides, R. G. Nuzzo, D. L. Allara and M. D. Porter, Langmuir, 1988, 4, 365 CrossRef CAS.
  19. T. Sagara, S. Igarashi, H. Sato and K. Niki, Langmuir, 1991, 7, 1005 CrossRef CAS.
  20. T. Sagara, H. Sato and K. Niki, Benseki Kagaku, 1991, 40, 641 Search PubMed.
  21. T. Sagara, K. Niwa, A. Sone, C. Hinnen and K. Niki, Langmuir, 1990, 6, 254 CrossRef CAS.
  22. J. R. Winkler and H. B. Gray, Chem. Rev., 1992, 92, 369 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.