Effect of the addition of Sn to zirconia on the acidic properties of the sulfated mixed oxide

(Note: The full text of this document is currently only available in the PDF Version )

Anjali Patel, Gisèle Coudurier, Nadine Essayem and Jacques C. Ve′drine


Abstract

Zirconium hydroxide, tin hydroxide and the mixed hydroxide of tin and zirconium (1:9) have been prepared, sulfated with a 0.1 Maqueous H2SO4 solution and calcinated at 873 K. The chemical composition of these solids has been characterized by chemical analysis, differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX–) scanning transmission electron microscopy (STEM), and their structural and textural properties have been studied by BET surface area and XRD techniques. The nature of the acid sites (Brønsted or Lewis) was characterized by in situ IR study of pyridine adsorption and desorption and their amount was found to depend on the sulfate content. Catalytic properties have been studied for the isomerization reaction of n-butane to isobutane, in the 423 to 523 K range and for propan-2-ol conversion, in the 373 to 473 K range. Addition of Sn to ZrO2 (SnO2:ZrO2=1:9) led to a solid solution and enhanced slightly (ca. 30%) the weak acid features of ZrO2 and removed the basic properties of pure SnO2 which was shown to convert propan-2-ol to acetone. Upon sulfation of ZrO2, SnO2–ZrO2[1:9] and SnO2, the acidity of the oxides was sharply enhanced. SO42-/SnO2, which was inactive for the isomerization reaction, was only 60% less active than SO42-/ZrO2 for propan-2-ol dehydration. This shows that sulfation of SnO2 generates acid sites of moderate strength. The presence of only 10% of SnO2 in ZrO2 decreased the reaction rates per SO42- by a factor of six for the initial n-butane isomerization reaction and by a factor of seven for the propan-2-ol dehydration to propene and diisopropyl ether. It is suggested that the presence of Sn decreases the electron acceptor properties of Zr and thus its acidity strength. Since the rate per sulfated species of both reactions decreased in the same proportion, one may consider that on SO42-/ZrO2 and SO42-/SnO2–ZrO2 samples there is no site of moderate strength able to dehydrate propan-2-ol without isomerising n-butane.


References

  1. K. Tanabe, M. Misono, Y. Ono and H. Hattori, Stud. Surf. Sci. Catal., 1989, 51, 199.
  2. K. Arata, Adv. Catal., 1990, 37, 165 CAS.
  3. K. Tanabe, H. Hattori and T. Yamaguchi, Crit. Rev. Surf. Chem., 1990, 1, 1 Search PubMed.
  4. T. Yamaguchi, Appl. Catal., 1990, 61, 1 CrossRef CAS.
  5. A. Corma and A. Martinez, Catal. Rev. Sci. Eng., 1993, 35, 483 Search PubMed.
  6. M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1979, 1148, 1980, 851 Search PubMed.
  7. T. Yamaguchi, K. Tanabe and Yao Chin Kung, Mater. Chem. Phys., 1986, 7, 67.
  8. T. Yamaguchi, T. Jin and K. Tanabe, J. Phys. Chem., 1986, 90, 3148 CrossRef CAS.
  9. T. Yamaguchi, T. Jin, T. Ishida and K. Tanabe, Mater. Chem. Phys., 1987, 17, 3 CrossRef CAS.
  10. J. R. Sohn and H. W. Kim, J. Mol. Catal., 1989, 52, 361 CrossRef CAS.
  11. K. I. Mukaida, T. Miyoshi and T. Satoh, in Acid–base Catalysis I, ed. K. Tanabe, H Hattori, T. Yamaguchi and T. Tanaka, Kodansha, Tokyo, 1989, p. 361 Search PubMed.
  12. F. R. Chen, G. Coudurier, J. F. Joly and J. C. Védrine, in ACS Symp. Ser., 1991, 36, 878 Search PubMed.
  13. J. M. Parera, Catal. Today, 1992, 15, 481 CrossRef CAS.
  14. F. R. Chen, G. Coudurier, J. F. Joly and J. C. Védrine, J. Catal., 1993, 143, 616 CrossRef CAS.
  15. F. Babou, B. Bigot, G. Coudurier, Ph. Sautet and J. C. Védrine, Stud. Surf. Sci. Catal., 1994, 90, 519 CAS.
  16. C. Morterra, G. Cerrato, F. Pinna, M. Signoretto and G. Strukul, J. Catal., 1994, 149, 181 CrossRef CAS.
  17. Z. Gao, J. M. Chen, W. M. Hua and Y. Tang, Stud. Surf. Sci. Catal, 1994, 90, 507 CAS.
  18. F. Babou, G. Coudurier and J. C. Védrine, J. Catal., 1995, 152, 341 CrossRef CAS.
  19. K. Arata and M. Hino, React. Kinet. Catal. Lett., 1984, 25, 143 CAS.
  20. M. Hino, S. Kobayashi and K. Arata, React. Kinet. Catal. Lett., 1981, 18, 491 CAS.
  21. A. Kayo, T. Yamaguchi and K. Tanabe, J. Catal., 1983, 83, 99 CrossRef CAS.
  22. G. W. Wang, H. Hattori and K. Tanabe, Chem. Lett., 1983, 277 CAS.
  23. H. Matsuhashi, M. Hino and K. Arata, Appl. Catal., 1990, 59, 205 CrossRef CAS.
  24. T. C. Luy, J. C. Yori, A. A. Castro and J. M. Parera, React. Kinet. Catal. Lett., 1988, 36, 275.
  25. T. Ishida, T. Yamaguchi and K. Tanabe, Chem. Lett., 1988, 1869 CAS.
  26. C. Guo, Z. Yu, Z. Qian, J. Huang and Y. Xu, Stud. Surf. Sci. Catal., 1994, 90, 543 CAS.
  27. F. Lónyi, J. Valyon, J. Engelhardt and F. Mizukami, J. Catal., 1996, 160, 279 CrossRef CAS.
  28. J. R. Sohn, H. J. Jang, M. Y. Park, E. H. Park and S. E. Park, J. Mol. Catal., 1994, 93, 149 CrossRef CAS.
  29. K. Tanabe, Bull. Chem. Soc. Jpn., 1974, 47, 1064 CAS.
  30. H. A. Benesi and B. H. C. Windquist, Adv. Catal., 1978, 27, 97 CAS.
  31. K. Tanabe, M. Misono, Y. Ono and H. Hattori, Stud. Surf. Sci. Catal., 1989, 51, 108.
  32. T. Seiyama, Metal Oxides and Their Catalytic Actions, Kodansha, Tokyo, 1978 Search PubMed.
  33. T. Kataoka and J. A. Dumesic, J. Catal., 1986, 112, 66 CrossRef CAS.
  34. H. H. Kung, J. Solid State Chem., 1984, 52, 191 CrossRef CAS.
  35. M. Itoh, H. Hattori and K. Tanabe, J. Catal., 1974, 35, 225 CrossRef CAS.
  36. H. Hattori, M. Itoh and K. Tanabe, J. Catal., 1975, 38, 172 CrossRef CAS.
  37. H. Hattori, M. Itoh and K. Tanabe, J. Catal., 1976, 41, 46 CrossRef CAS.
  38. I. C. V. Odenbrand, M. G. J. Brandin and G. Busca, J. Catal., 1992, 135, 505 CrossRef CAS.
  39. Z. Liu, J. Tabora and R. J. Davis, J. Catal., 1994, 149, 117 CrossRef CAS.
  40. H. J. M. Bosman, E. C. Kruissink, J. van der Spoel and F. van den Brink, J. Catal., 1994, 148, 660 CrossRef CAS.
  41. J. B. Miller, S. E. Rankin and E. I. Ko, J. Catal., 1994, 148, 682 CrossRef CAS.
  42. S. M. Maurer, D. Ng and E. I. Ko, Catal. Today, 1993, 16, 319 CrossRef CAS.
  43. K. Arata, S. Akutagawa and K. Tanabe, Bull. Chem. Soc. Jpn., 1976, 49, 390 CAS.
  44. Y. Hirashima, K. Nishiwaki, A. Miyakoshi, H. Tsuiki, A. Veno and H. Nakabayashi, Bull. Chem. Soc. Jpn., 1988, 61, 1945 CAS.
  45. J. A. Navio, M. Macias, F. J. Marchena, J. M. Campelo and J. M. Marinas, in New Frontiers in Catalysis, ed. L. Guczi, F. Solymosi and P. Tétényl, Akedémia Kiado, Budapest, 1993, p. 2597 Search PubMed.
  46. P. D. L. Mercera, J. G. van Ommen, E. B. Doesburg, A. J. Burgraaf and J. R. H. Ross, Appl. Catal., 1990, 57, 127 CrossRef CAS.
  47. R. Srivinasan, R. A. Keogh, D. R. Milburn and B. H. Davis, J. Catal., 1995, 153, 123 CrossRef.
  48. J. P. Chen and R. T. Yang, J. Catal., 1993, 139, 277 CrossRef CAS.
  49. F. Babou, B. Bigot and Ph. Sautet, J. Phys. Chem., 1993, 97, 11501 CrossRef CAS.
  50. T. Jin, T. Yamaguchi and K. Tanabe, J. Phys. Chem., 1986, 90, 4794 CrossRef CAS.
  51. R. J. Gillepsie and E. A. Robinson, Can. J. Chem., 1962, 40, 644 CAS.
  52. P. A. Giguère and R. Savoie, Can. J. Chem., 1963, 41, 287.
  53. R. J. Gillespie and E. A. Robinson, Can. J. Chem., 1963, 41, 2074 CAS.
  54. M. Henry, PhD Thesis, University of Paris VI, 1988.
  55. W. J. Mortier, J. Catal., 1978, 55, 138 CrossRef CAS.
  56. R. T. Sanderson, Chemical Bonds and Bond Energies, Academic Press, New York, 2nd edn., 1976 Search PubMed.
  57. F. Babou, G. Coudurier and J. C. Védrine, J. Chim. Phys., 1995, 92, 1457 Search PubMed.
  58. F. Babou, PhD Thesis, University of Lyon I, 1994, no. 88–94.
  59. A. Ouqour, G. Coudurier and J. C. Védrine, J. Chem. Soc., Faraday Trans., 1993, 89, 3151 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.