Controlling the channel diameter of the mesoporous molecular sieve MCM-41

(Note: The full text of this document is currently only available in the PDF Version )

Chi-Feng Cheng, Wuzong Zhou, Dong Ho Park, Jacek Klinowski, Mark Hargreaves and Lynn F. Gladden


Abstract

We describe a simple method of controlling the channel diameter of the mesoporous molecular sieve MCM-41 in the 26.1–36.5 Å range and the wall thickness in the 13.4–26.8 Å range while using the same gel mixture. This is achieved by varying the synthesis temperature in the 70–200°C range and/or reaction times in the 0.5–96 h range. The unit cell parameter, channel diameter, thickness of the channel wall, surface area, degree of polymerization and grain morphology were monitored by X-ray diffraction, N2 adsorption, 29Si magic-angle-spinning NMR and transmission electron microscopy. MCM-41 with wider and thicker-walled channels and higher degree of polymerization is prepared at higher temperatures and at longer reaction times. Thick-wall MCM-41 has higher thermal stability but lower surface area. The material with the thickest channel wall ever reported (26.8 Å) can withstand calcination at nearly 1000°C with little structural damage. We suggest a mechanism for the increase of wall thickness and channel diameter. Fascinating morphological features involving sealed silicate ‘tubes’ and ‘vesicles’ up to 1200 Å in diameter are observed.


References

  1. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use, Wiley, London, 1974 Search PubMed.
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature (London), 1992, 359, 710 CrossRef CAS.
  3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  4. E. F. Vansant, Pore Size Engineering in Zeolites, Wiley, Chichester, 1990 Search PubMed.
  5. D. Khushalani, A. Kuperman, G. A. Ozin, K. Tanaka, J. Garces, M. M. Olken and N. Coombs, Adv. Mater., 1995, 7, 842 CAS.
  6. N. Coustel, F. D. Renzo and F. Fajula, J. Chem. Soc., Chem. Commun., 1994, 967 RSC.
  7. P. T. Tanev and L. T. Vlaev, J. Colloid Interface Sci., 1993, 160, 100 CrossRef CAS.
  8. G. Engelhardt and D. Michel, High-resolution Solid-State NMR of Silicates and Zeolites, Wiley, Chichester, 1987 Search PubMed.
  9. C.-F. Cheng, H. He, W. Zhou and J. Klinowski, Chem. Phys. Lett., 1995, 244, 117 CrossRef CAS.
  10. B. P. Feuston and J. B. Higgins, J. Phys. Chem., 1994, 98, 4459 CrossRef CAS.
  11. N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem., 1976, 80, 1075 CrossRef CAS.
  12. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 2nd edn., 1985 Search PubMed.
  13. H. Wenneström and F. Evans, The Colloidal Domain, VCH, New York, 1994 Search PubMed.
  14. O. Regev, S. Ezrahi, A. Azerin, E. Wachtel, N. Garti, E. W. Kaler, A. Khan and Y. Talmon, Langmuir, 1996, 12, 668 CrossRef CAS.
  15. B. Lindman, N. Kamenka, B. Brun and P. G. Nilsson, in Microemulsion, ed. I. D. Robb, Plenum, New York, 1982 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.