Visible light induced photo-oxidation of water. Formation of intermediary hydroxyl radicals through the photoexcited triplet state of perfluorophenazine

(Note: The full text of this document is currently only available in the PDF Version )

Takayuki Kitamura, Hiroyuki Fudemoto, Yuji Wada, Kei Murakoshi, Mitsuhiro Kusaba, Nobuaki Nakashima, Tetsuro Majima and Shozo Yanagida


Abstract

1,2,3,4,5,6,7,8-Octafluorophenazine (F-Phen) has an absorption spectrum in the longer wavelength extending to the visible-light region and has a more positive oxidation potential than for unfluorinated phenazine. F-Phen has been photolysed with water in acetonitrile under visible-light irradiation to produce stoichiometrically 1,3,4,5,6,7,8-heptafluoro-2-hydroxyphenazine (F-Phen-2-OH). Photolysis of F-Phen with water in the presence of benzene leads to the formation of phenol followed by the disappearance of F-Phen. EPR analysis and laser flash photolysis reveal that the photoexcited triplet state of F-Phen participates in water oxidation to hydroxyl radicals with concurrent conversion to F-Phen-2-OH. The mechanism is discussed with the results of semi-empirical molecular orbital calculations.


References

  1. (a) A. J. Bard and M. A. Fox, Acc. Chem. Res., 1995, 28, 141 CrossRef CAS; (b) E. Amouyal, Sol. Energy Mater. Sol. Cells, 1995, 38, 249 CrossRef CAS and references in therein.
  2. K. Maruo, Y. Wada and S. Yanagida, Bull. Chem. Soc. Jpn., 1992, 65, 3439 CAS.
  3. K. Maruo, Y. Wada and S. Yanagida, Chem. Lett., 1993, 565 CAS.
  4. T. Kitamura, K. Maruo, Y. Wada, K. Murakoshi, T. Akano and S. Yanagida, J. Chem. Soc., Chem. Commun., 1995, 2189 RSC.
  5. T. Kitamura, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, T. Majima, S. Takamuku, T. Akano and S. Yanagida, J. Chem. Soc., Faraday Trans., 1996, 92, 3491 RSC.
  6. J. M. Birchall, R. N. Haszeldine and J. E. G. Kemp, J. Chem. Soc. C, 1970, 449 RSC.
  7. A. G. Hudson, A. C. Pedler and J. C. Tatlow, Tetrahedron Lett., 1968, 17, 2143 CrossRef.
  8. (a) I. Yamazaki and L. H. Piette, J. Biol. Chem., 1990, 265, 13589 CAS; (b) J. Am. Chem. Soc., 1991, 113, 7588 Search PubMed.
  9. A. G. Hudson, M. L. Jenkins, A. C. Pedler and J. C. Tatlow, Tetrahedron, 1970, 26, 5781 CrossRef CAS.
  10. (a) A. J. Kallir, G. W. Suter and U. P. Wild, J. Lumin., 1984, 31 and 32, 530 CrossRef; (b) J. Phys. Chem., 1985, 89, 1996 Search PubMed.
  11. D. T. Sawyer and R. Y. Komai, Anal. Chem., 1972, 44, 715 CrossRef CAS.
  12. L. Eberson, Acta Chem. Scand., Ser. B, 1984, 38, 439 Search PubMed.
  13. G. R. Buettner, Free Rad. Biol. Med., 1987, 3, 259 CrossRef CAS.
  14. T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier Science, New York, 1988, p. 180 Search PubMed.
  15. Y. Hirata and I. Tanaka, Chem. Phys. Lett., 1976, 43, 568 CrossRef CAS.
  16. (a) J. Marquet, Z. Jiang, I. Gallardo, A. Batlle and E. Cayón, Tetrahedron Lett., 1993, 34, 2801 CrossRef; (b) M. Mir, M. Espín, J. Marquet, I. Gallardo and C. Tomasi, Tetrahedron Lett., 1993, 34, 9055; (c) M. Niat, J. Marquet, I. Gallardo, M. Cervera and M. Mir, Tetrahedron Lett., 1994, 35, 9059 CrossRef CAS.
  17. P. K. Freeman and R. Srinivasa, J. Org. Chem., 1987, 52, 252 CrossRef CAS.
  18. L. C. T. Shoute and J. P. Mittal, J. Phys. Chem., 1993, 97, 379 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.