Activation of O2 over SrF2- and BaF2-promoted SmOF catalysts for the oxidative dehydrogenation of ethane

(Note: The full text of this document is currently only available in the PDF Version )

Chak-Tong Au and Xiaoping Zhou


Abstract

Promotion of rhombohedral SmOF by SrF2 or BaF2 led to significant gain in ethane conversion but little change in ethene selectivity in the oxidative dehydrogenation of ethane. At 893 K, C2H6 conversion and C2H4 selectivity over SmOF were, respectively, 38.8 and 71.2%. With 10% SrF2/SmOF and 20% BaF2/SmOF catalysts, C2H6 conversion became 69.7 and 68.4%, respectively, while C2H4 selectivity was 67.7%. X-Ray diffraction (XRD) studies revealed a small amount of cubic SrF2 but no crystal phase of BaF2 in the promoted catalysts. The SrF2 lattice contracted slightly and the SmOF lattices expanded slightly. We believe that such deformities resulted from ionic exchange/substitution occurring between/within the SrF2 and SmOF phases with creation of active centres. The Raman and O2 temperature programmed desorption (TPD) results, indicated that, above 973 K, dioxygen species on SmOF were converted completely to mono-oxygen species. With the promoted catalysts, such conversion was complete at around 573 K. Because Sm3+ is paramagnetic and owing to the effect of spin–spin interaction, we could not obtain any EPR signals of O2- or O- over SmOF. Over the promoted catalysts, however, EPR signals corresponding to O2- and O- located in the proximity of non-paramagnetic Sr2+ and Ba2+ ions were observed. The conversion of O2- to O- was confirmed and monitored by EPR spectroscopy. We conclude that the deformities generated in the promoted catalysts have facilitated the conversion of dioxygen species to O- species at lower temperature, resulting in better catalytic performance.


References

  1. D. K. Bohme and F. C. Fehsenfeld, Can. J. Chem., 1969, 47, 2717 CAS.
  2. K. Aika and J. H. Lunsford, J. Phys. Chem., 1977, 81, 1393 CrossRef CAS.
  3. T. Ito, X. Wang, C. H. Lin and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 5062 CrossRef CAS.
  4. H. Yamashita, Y. Machida and A. Tomita, Appl. Catal A., 1991, 79, 203 CrossRef CAS.
  5. X. P. Zhou, S. Q. Zhou, S. J. Wang, J. X. Cai, W. Z. Weng, H. L. Wan and K. R. Tsai, Chemical Research in Chinese Universities., 1993, 9, 264 Search PubMed.
  6. X. P. Zhou, Z. S. Chao, W. Z. Weng, W. D. Zhang, H. L. Wan and K. R. Tsai, Catal. Lett., 1994, 29, 177 CrossRef CAS.
  7. Z. S. Chao, X. P. Zhou, S. J. Wang, H. L. Wang and K. R. Tsai, J. Natural Gas Chem., 1995, 4, 202 Search PubMed.
  8. D. M. Dai, X. P. Zhou, Z. S. Chao, S. J. Wang, H. L. Wan and K. R. Tsai, J. Natural Gas Chem., 1995, 4, 45 Search PubMed.
  9. S. Q. Zhou, X. P. Zhou, H. L. Wan and K. R. Tsai, Catal. Lett., 1993, 20, 179 CrossRef CAS.
  10. Z. S. Chao, X. P. Xhou, S. J. Wang, F. C. Xu, H. L. Wan and K. R. Tsai, Chinese Chem. Lett., 1994, 5, 685 Search PubMed.
  11. X. P. Zhou, W. D. Zhang, H. L. Wan and K. R. Tsai, Catal. Lett., 1993, 21, 113 CrossRef CAS.
  12. C. T. Au and X. P. Zhou, J. Chem. Soc., Faraday Trans., 1996, 92, 1793 RSC.
  13. G. Herzberg, Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules, Van Nostrands, Princeton, NJ, 2nd edn., 1950 Search PubMed.
  14. (a) P. Smith, J. Phys. Chem., 1956, 60, 1471 CAS; (b) J. Shamir, J. Binenboym and H. H. Claassen., J. Am. Chem. Soc., 1968, 90, 6223 CrossRef CAS.
  15. (a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York, 3rd edn., 1978 Search PubMed; (b) M. Bösch and W. Kanzig, Helv. Phys. Acta, 1975, 48, 743 Search PubMed.
  16. (a) N. Sheppard, Vibration Properties of Adsorbates, ed. R. F. Williss, Springer-Verlag, Berlin, 1980 Search PubMed; (b) H. H. Eysel and S. Thym, Z. Anorg. Allg. Chem., 1975, 411, 97 CrossRef CAS.
  17. (a) L. Andrews, J. Phys. Chem., 1969, 73, 3922 CrossRef CAS; (b) L. Andrews, J. T. Hwang and C. Tindle, J. Phys. Chem., 1973, 77, 1065 CrossRef CAS.
  18. W. Holzer, W. F. Murphy, H. J. Bernstein and J. Rolfe, J. Mol. Spectrosc., 1968, 26, 543 CAS.
  19. M. Kozuka and K. Nakamoto, J. Am. Chem. Soc., 1981, 103, 2162 CrossRef CAS.
  20. K. Nakamoto, Y. Nonaka, T. Ishiguro, M. W. Urban, M. Suzuki, M. Kozuka, Y. Nishida and S. Kida, J. Am. Chem. Soc., 1982, 104, 3386 CrossRef CAS.
  21. R. D. Jones, D. A. Summerville and F. Basolo, Chem. Rev., 1979, 79, 139 CrossRef CAS.
  22. (a) G. Blyholder and E. A. Richardson, J. Phys. Chem., 1964, 68, 3882 CAS; (b) D. W. L. Griffiths, H. E. Hallam and W. J. Thomas, J. Catal., 1970, 17, 18 CrossRef CAS.
  23. P. K. Dutta and R. E. Zaykoski, J. Phys. Chem., 1989, 93, 2603 CrossRef CAS.
  24. R. E. Hester and E. M. Nour, J. Raman Spectrosc., 1981, 11, 64 CAS.
  25. C. T. Au and X. P. Zhou, unpublished results.
  26. D. M. Adamas, Metal-Ligand and Related Vibrations, Edward Arnold, London, 1967, p. 248 Search PubMed.
  27. A. B. P. Lever, G. A. Ozin and H. B. Gray, Inorg. Chem., 1980, 19, 1823 CrossRef CAS.
  28. J. S. Valentine, Chem. Rev., 1973, 73, 237.
  29. C. T. Au, X. P. Zhou and H. L. Wan, Catal. Lett., 1996, 40, 101 CrossRef CAS.
  30. J. Soria, A. Martinez-Arias and J. C. Conesa, J. Chem. Soc., Faraday Trans., 1995, 91, 1669 RSC.
  31. C. Louis, T. L. Chang, M. Kermarec, T. L. Van, J. M. Tatibouët and M. Che, Catal. Today, 1992, 13, 283 CrossRef CAS.
  32. W. Känzig and M. H. Cohn, Phys. Rev. Lett., 1959, 3, 509 CrossRef CAS.
  33. Z. Sojka and M. Che, J. Phys. Chem., 1995, 99, 5418 CrossRef CAS.
  34. N. B. Wong, Y. B. Taarit and J. H. Lunsford, J. Chem. Phys., 1974, 60, 2148 CrossRef CAS.
  35. J. X. Wang and J. H. Lunsford, J. Phys. Chem., 1986, 90, 5883 CrossRef CAS.
  36. A. J. Tench, T. Lawson and J. F. J. Kibblewhite, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 1169 RSC.
  37. J. H. Lunsford, Catal. Rev., 1973, 8, 135 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.