Γ-point density functional calculations on the adsorption of rhodium and palladium particles on MgO(001) surface and their reactivity

(Note: The full text of this document is currently only available in the PDF Version )

András Stirling, Isao Gunji, Akira Endou, Yasunori Oumi, omoji Kubo and Akira Miyamoto


Abstract

We have performed periodic density functional calculations on the adsorption of transition-metal atoms (Rh and Pd) on MgO(001) support. The chemical properties of the supported metal atoms were examined by calculating the adsorption of NO and NO2 on the metal atoms. Sampling only the k=0 wavevector point in the Brillouin zone we solved the one-particle Schrödinger equations within the Kohn–Sham framework, employing a unit cell which contained 16 surface atoms and the adsorbate particles. We have found that the interaction between the support surface and the adsorbing metal atom is stronger for Rh than Pd by 1 eV using non-local density approximation. The difference is explained by considering the endothermic reorganizations in the metal electronic structures due to the adsorption. The NO adsorption demonstrated the cationic nature of the adsorbed metal particles and showed that supported Rh atoms can form stronger bond with NO than supported Pd atoms. The NO2 adsorption also showed stronger Rh–N interactions and the asymmetric orientation of NO2 suggested weak additional interaction between the ligand and the support surface.


References

  1. K. Heinemann, T. Osaka, H. Poppa and M. Avalos-Borja, J. Catal., 1983, 83, 61 CrossRef CAS.
  2. C. Duriez, C. Chapon, C. R. Henry and J. M. Rickard, Surf. Sci., 1990, 230, 123 CrossRef CAS.
  3. A. B. Kunz, Phil. Mag., 1985, 51, 209 Search PubMed.
  4. N. C. Bacalis and A. B. Kunz, Phys. Rev. B, 1985, 32, 4857 CrossRef CAS.
  5. K. H. Johnson and S. V. Pepper, J. Appl. Phys., 1982, 53, 6634 CrossRef CAS.
  6. Y. Li, D. C. Langreth and M. R. Pederson, Phys. Rev. B, 1995, 52, 6067 CrossRef CAS.
  7. L. Pedocchi, A. Goursot and B. Coq, 6th Intl. Conf. Appl. DFT Chem. Phys., Paris, 1995 Search PubMed.
  8. G. Pacchioni and N. Rösch, J. Chem. Phys., 1996, 104, 7329 CrossRef CAS.
  9. T. R. Ward, P. Alemany and R. Hoffmann, J. Phys. Chem., 1993, 97, 7691 CrossRef CAS.
  10. U. Schönberger, O. K. Andersen and M. Methfessel, Acta Metall. Mater., 1992, 40, S1 Search PubMed.
  11. C. Li, R. Wu, A. J. Freeman and C. L. Fu, Phys. Rev. B, 1993, 48, 8317 CrossRef CAS.
  12. DSolid User Guide, San Diego, Biosym/MSI, October 1995 Search PubMed.
  13. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133.
  14. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  15. A. Becke, J. Chem. Phys., 1988, 88, 2547 CrossRef CAS; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 786.
  16. B. Delley, J. Chem. Phys., 1990, 92, 508 CrossRef CAS.
  17. G. te Velde and E. J. Baerends, Phys. Rev. B, 1991, 44, 7888 CrossRef.
  18. P. P. Ewald, Ann. Physik, 1921, 64, 253 Search PubMed.
  19. B. Delley, J. Phys. Chem., 1996, 100, 6107 CrossRef CAS.
  20. A. Zunger and A. J. Freeman, Phys. Rev. B, 1977, 15, 4716 CrossRef CAS.
  21. R. L. Martin and P. J. Hay, J. Chem. Phys., 1981, 75, 4539 CrossRef CAS.
  22. A. Stirling, A. Endou, Y. Oumi, M. Kubo and A. Miyamoto, J. Chem. Phys., submitted Search PubMed.
  23. M. Shelef and G. W. Graham, Catal. Rev. Sci. Eng., 1994, 36, 433 Search PubMed.
  24. B. Delley and E. F. Steigmeier, Appl. Phys. Lett., 1995, 67, 2370 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.