Vibrational effects in the muonated formyl radical MuCO2A′

(Note: The full text of this document is currently only available in the PDF Version )

Brian Webster


Abstract

The muonium and deuterium isotopomers of the formyl radical HCO2A′ are investigated using a variation-perturbation approach for the calculation of vibrational effects in these radicals. After inclusion of anharmonicity MuCO has a calculated zero-point vibrational energy of 74.15 kJ mol-1 compared with a value of 36.11 kJ mol-1 for HCO. The effect is discussed of these zero-point energy contributions to the formation of MuCO. The calculated reduced muon–electron hyperfine coupling constant Aµ is 437.75±2.86 MHz for the muonated radical in the ground vibrational level. This represents a calculated α-isotope effect Aµ/Ap of 1.18, where Ap is the proton–electron hyperfine coupling constant in the formyl radical.


References

  1. W. M. Vaidya, Proc. R. Soc. London, A, 1934, 147, 513.
  2. K. Tanaka and E. R. Davidson, J. Chem. Phys., 1979, 70, 2904 CrossRef CAS.
  3. A. O. Langford and C. B. Moore, J. Chem. Phys., 1984, 80, 4211 CrossRef CAS.
  4. C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner and C. B. Moore, J. Chem. Phys., 1988, 88, 2121 CrossRef CAS.
  5. R. S. Lowe and A. R. W. McKellar, J. Chem. Phys., 1981, 74, 2686 CrossRef CAS.
  6. K. L. Murray, T. M. Miller, D. G. Leopold and W. C. Lineberger, J. Chem. Phys., 1986, 84, 2520 CrossRef CAS.
  7. J. M. Brown and D. A. Ramsay, Can. J. Phys., 1975, 53, 2232 CrossRef CAS.
  8. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1–S19 RSC.
  9. C. B. Moore and J. C. Weisshaar, Annu. Rev. Phys. Chem., 1983, 34, 525 CrossRef CAS.
  10. T. A. Claxton and S. F. J. Cox, Philos. Mag. B, 1995, 72, 267 Search PubMed.
  11. V. G. Storchak, V. N. Duginov, B. F. Kirillov, A. V. Pirogov, V. G. Grebinnik, A. N. Ponomarev, V. A. Zhukov, A. B. Lazarev and S. N. Shilov, Kurchatov Institute of Atomic Energy Report IAE-5214/10, 1990 Search PubMed.
  12. D. M. Garner, TRIUMF Annual Report on Scientific Activities, 1985, 55 Search PubMed.
  13. S. F. J. Cox, G. H. Eaton and J. E. Magraw, Hyperfine Interact., 1990, 65, 773.
  14. B. Webster and D. Buttar, J. Chem. Soc., Faraday Trans., 1996, 92, 2331 RSC.
  15. C. W. Kern and R. L. Matcha, J. Chem. Phys., 1968, 49, 2081 CrossRef CAS.
  16. W. C. Ermler and C. W. Kern, J. Chem. Phys., 1971, 55, 4851 CrossRef CAS.
  17. W. C. Ermler and B. J. Krohn, J. Chem. Phys., 1977, 67, 1360 CrossRef CAS.
  18. B. J. Krohn, W. C. Ermler and C. W. Kern, J. Chem. Phys., 1974, 60, 22 CrossRef CAS.
  19. L. B. Harding and W. C. Ermler, J. Comput. Chem., 1985, 6, 13 CrossRef CAS.
  20. D. A. Clabo Jr., W. D. Allen, R. B. Remington, Y. Yamaguchi and H. F. Schaefer III, Chem. Phys., 1988, 123, 187 CrossRef.
  21. E. Hirota, J. Mol. Struct., 1986, 146, 237 CrossRef CAS.
  22. B. C. Webster and D. Buttar, J. Chem. Soc., Faraday Trans., 1992, 88, 1087 RSC.
  23. R. N. Dixon, J. Mol. Spectrosc., 1969, 30, 248 CrossRef CAS.
  24. H. Paul, Chem Phys. Letts., 1975, 31, 472 Search PubMed.
  25. E. Roduner, W. Strub, P. Burkhard, J. Hochmann, P. W. Percival, M. Ramos and B. C. Webster, Chem. Phys., 1982, 67, 275 CrossRef CAS.
  26. J. J. Pan, D. G. Fleming, M. Senba, D. J. Arseneau, R. Snooks, S. Baer, M. Shelley, P. W. Percival, J. C. Brodovitch, B. Addison-Jones, S. Wlodek and S. F. J. Cox, Hyperfine Interact., 1994, 87, 865 CAS.
  27. S. F. J. Cox, R. M. Macrae, W. G. Williams and D. G. Fleming, Hyperfine Interact., 1994, 87, 871 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.