Recent progress in surface NMR-electrochemistry

(Note: The full text of this document is currently only available in the PDF Version )

Jianjun Wu, James B. Day, Krzysztof Franaszczuk, Bernard Montez, Eric Oldfield, Andrzej Wieckowski, Pierre-Andre′ Vuissoz and Jean-Philippe Ansermet


Abstract

NMR spectroscopy is one of the newer spectroscopic techniques for investigating the static, dynamic and electronic structures of molecules adsorbed onto metal catalyst surfaces. We review recent progress in the application of solid-state NMR methods to the investigation of molecules adsorbed onto metal surfaces in an electrochemical environment: in the presence of electrolyte, and at an electrified interface under external potentiostatic control. While at a very early stage of development, the NMR-electrochemistry approach has considerable potential for investigating otherwise inaccessible aspects of electrode and adsorbate structure, and should enable a comparison of results obtained from different spectroscopies, in particular from IR spectroscopy. We present a brief review of the development of the subject, followed by details of the instrumentation necessary for NMR-electrochemistry studies. We show how spin–spin relaxation can give information on surface structure and surface diffusion, how spin–lattice relaxation can give information on the presence of conduction electron spillover onto the adsorbate, and how the NMR of surface species responds to an externally applied electric field. The 13C-NMR of CO on Pt in an electrochemical environment is compared with the 13C-NMR of CO on Pt catalysts in vacuum, which are well characterized. In the case of CN on Pt, we show large spectral shifts of the resonance as the electrode potential is varied, providing an independent measurement of the effects of the electrified interface on the chemisorption bond. Spectral sensitivity is also now adequate to observe nuclei which produce even weaker signals than 13C, such as 15N. The NMR-electrochemistry method thus opens up a broad new array of possibilities for probing static structures (from T2), surface diffusion (from the temperature dependence of T2) as well as electronic properties of the chemisorption bond (from Tl, and from electrode potential effects) at electrochemical interfaces, and for studying reactive intermediates and poisons on high-surface-area catalysts, such as those utilized in hydrogen and organic fuel cells.


References

  1. M. Mehring, Principles of High Resolution NMR in Solids, Springer, New York, 1983 Search PubMed.
  2. C. P. Slichter, Surf Sci., 1981, 106, 382 CrossRef CAS.
  3. C. P. Slichter, Annu. Rev. Phys. Chem., 1986, 37, 25 CrossRef CAS.
  4. J. P. Burger, N. J. Poulis and W. P. A. Haas, Physica, 1961, 27, 514 Search PubMed.
  5. T. Ito, T. Kadowski and T. Toya, Jpn. J. Appl. Phys., 1974, Suppl. 2, Part 2, p. 257 Search PubMed.
  6. T. Ito and T. Kadowski, Jpn. J. Appl. Phys., 1975, 14, 1673 CAS.
  7. T. Ito, T. Kumagai and T. Kadowski, Jpn. J. Appl. Phys., 1977, 16, 1919 CAS.
  8. H. Pfeifer, in NMR Basic Principles and Progress, ed. P. Diehl, E. Fluck and R. Kosfeld, Springer, Berlin, 1972, vol. 7, p. 53 Search PubMed.
  9. T. M. Duncan and C. Dybowski, Surf Sci. Rep, 1981, 1, 157 CrossRef CAS.
  10. J.-Ph. Ansermet, C. P. Slichter and J. H. Sinfelt, Prog. NMR Spectrosc., 1990, 22, 401 Search PubMed.
  11. P. K. Wang, J.-Ph. Ansermet, S. L. Rudaz, Z. Wang, S. Shore, C. P. Slichter and J. H. Sinfelt, Science, 1986, 234, 35 CAS.
  12. T. M. Duncan, Colloids Surf., 1990, 45, 11 CrossRef CAS.
  13. T. M. Duncan, J. T. Yates Jr. and R. W. Vaughan, J. Chem. Phys., 1980, 73, 975 CrossRef CAS.
  14. T. M. Duncan and T. W. Root, J. Phys. Chem., 1988, 92, 4426 CrossRef CAS.
  15. T. M. Duncan, A. M. Thayer and T. W. Root, J. Chem. Phys., 1990, 92, 2663 CrossRef CAS.
  16. T. M. Duncan, A. M. Thayer and T. W. Root, Phys. Rev. Lett., 1989, 63, 62 CrossRef CAS.
  17. L. R. Becerra, C. P. Slichter and J. H. Sinfelt, J. Phys. Chem., 1993, 97, 10 CrossRef CAS.
  18. S. L. Rudaz, J.-Ph. Ansermet, P. K. Wang, C. P. Slichter and J. H. Sinfelt, Phys. Rev. Lett., 1985, 54, 71 CrossRef CAS.
  19. P. K. Wang, J.-Ph. Ansermet, C. P. Slichter and J. H. Sinfelt, Phys. Rev. Lett., 1985, 55, 2731 CrossRef CAS.
  20. J.-Ph. Ansermet, P. K. Wang, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B, 1988, 37, 1417 CrossRef CAS.
  21. J.-Ph. Ansermet, C. P. Slichter and J. H. Sinfelt, J. Chem. Phys., 1988, 88, 5963 CrossRef CAS.
  22. S. E. Shore, J.-Ph. Ansermet, C. P. Slichter and J. H. Sinfelt, Phys. Rev. Lett., 1987, 58, 953 CrossRef CAS.
  23. T. M. Duncan, K. W. Zilm, D. M. Hamilton and T. W. Root, J. Phys. Chem., 1989, 93, 2583 CrossRef CAS.
  24. K. W. Zilm, L. Bonneviot, D. M. Hamilton, G. G. Webb and G. L. Haller, J. Phys. Chem., 1990, 94, 1463 CrossRef CAS.
  25. P. K. Wang, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1984.
  26. P. K. Wang, C. P. Slichter and J. H. Sinfelt, Phys. Rev. Lett., 1984, 53, 82 CrossRef CAS.
  27. P. K. Wang, C. P. Slichter and J. H. Sinfelt, J. Phys. Chem., 1990, 94, 1154 CrossRef CAS.
  28. A. Wieckowski, S. D. Rosasco, G. N. Salaita, A. T. Hubbard, B. Bent, F. Zaera, D. Godbey and G. A. Somorjai, J. Am. Chem. Soc., 1985, 111, 7653.
  29. K. W. H. Chan and A. Wieckowski, J. Electrochem. Soc., 1990, 137, 367 CAS.
  30. P. J. Slezak and A. Wieckowski, J. Electroanal. Chem., 1992, 339, 401 CrossRef CAS.
  31. P. J. Slezak and A. Wieckowski, J. Magn. Reson. A, 1993, 102, 166 CrossRef CAS.
  32. P. J. Slezak, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1992.
  33. R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, 1987 Search PubMed.
  34. A. C. Kunwar, G. L. Turner and E. Oldfield, J. Magn. Reson., 1986, 69, 124 CAS.
  35. H. Angerstein-Kozlowska, B. E. Conway and W. B. A. Sharp, J. Electroanal. Chem., 1973, 43, 9 CrossRef CAS.
  36. H. Tamura, T. Arikado, H. Yoneyama and Y. Matsuda, Electrochim. Acta, 1974, 19, 272 CrossRef CAS.
  37. C. D. Makowka, C. P. Slichter and J. H. Sinfelt, Phys. Rev. Lett., 1982, 49, 379 CrossRef CAS; J. J. van der Klink, J. Buttet and M. Graetzel, Phys. Rev. B, 1984, 29, 6352 CrossRef CAS.
  38. C. D. Makowka, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B, 1985, 31, 5663 CrossRef CAS; J. P. Bucher and J. J. van der Klink, Phys. Rev. B, 1988, 38, 11038 CrossRef CAS.
  39. M. Weinert and A. J. Freeman, Phys. Rev. B, 1983, 28, 6262 CrossRef CAS.
  40. J. J. van der Klink, J. Phys. Condens. Matter, 1996, 8, 1845 CrossRef CAS.
  41. R. Hofmann, Rev. Mod. Phys., 1988, 60, 601 CrossRef CAS; P. Feibelman and D. R. Hamann, Surf. Sci., 1985, 149, 48 CAS.
  42. J. Andzelm and D. R. Salahub, Int. J. Quantum Chem., 1986, 29, 1091 CrossRef CAS.
  43. J-Ph. Ansermet, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1985.
  44. D. B. Zax, C. A. Klug, C. P. Slichter and J. H. Sinfelt, J. Phys. Chem., 1989, 93, 5009 CrossRef CAS.
  45. C. A. Klug, C. P. Slichter and J. H. Sinfelt, J. Phys. Chem., 1991, 95, 2119 CrossRef CAS.
  46. D. Zurawski, M. Wasberg and A. Wieckowski, J. Phys. Chem., 1990, 94, 2076 CrossRef CAS.
  47. C. K. Rhee, J. M. Feliu, E. Herrero, P. Mrozek and A. Wieckowski, J. Phys. Chem., 1993, 97, 9730 CrossRef CAS.
  48. I. Oda, J. Inukai and M. Ito, Chem. Phys. Lett., 1993, 203, 99 CrossRef CAS.
  49. L. R. Becerra, C. A. Klug, C. P. Slichter and J. H. Sinfelt, J. Phys. Chem., 1993, 97, 12014 CrossRef CAS.
  50. P. Zelenay and A. Wieckowski, in Electrochemical Interfaces Modern Techniques for In-Situ Interface Characterization, ed. H. D. Abruña, VCH, New York, 1991, p. 479 Search PubMed.
  51. J. Day, P. A. Vuissoz, E. Oldfield, A. Wieckowski and J.-Ph. Ansermet, J. Am. Chem. Soc., 1996, 118, 13046 CrossRef CAS.
  52. C. P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, New York, 1990, p. 156 Search PubMed.
  53. S. E. Shore, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1986.
  54. Y. Y. Tong, G. A. Martin and J. J. van der Klink, J. Phys. Condens. Matter, 1994, 6, L533 CrossRef CAS.
  55. G. Blyholder, J. Phys. Chem., 1964, 68, 2772 CrossRef CAS.
  56. J. N. Miller, I. Lindau and W. E. Spicer, Surf. Sci., 1981, 111, 595 CrossRef CAS.
  57. E. W. Plummer and W. Eberhardt, in Angle-Resolved Photoemission as a Tool for the Study of Surface, ed. I. Prigogine and S. A. Rice, Advances in Chemical Physics, Wiley, New York, 1982, vol. 49 Search PubMed.
  58. K. R. Naba and A. B. Anderson, Surf. Sci., 1982, 119, 35 CrossRef.
  59. M. Trenary, S. L. Tang, R. J. Simonson and F. R. McFeely, Surf. Sci., 1983, 124, 555 CrossRef CAS.
  60. J. Rogozik and V. Dose, Surf. Sci., 1986, 176, L847 CrossRef CAS.
  61. S. C. Chang, L. W. H. Leung and M. J. Weaver, J. Phys. Chem., 1989, 93, 5341 CrossRef CAS.
  62. S. C. Chang and M. J. Weaver, Surf. Sci., 1990, 238, 142 CrossRef CAS.
  63. Y. T. Wong and R. Hoffmann, J. Phys. Chem., 1991, 95, 859 CrossRef CAS.
  64. J. O'M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum, New York, 1970 Search PubMed.
  65. C. Korzeniewski, S. Pons, P. P. Schmidt and M. W. Severson, J. Chem. Phys., 1986, 85, 4153 CrossRef CAS.
  66. C. Stuhlmann, I. Villegas and M. J. Weaver, Chem. Phys. Lett., 1994, 219, 319 CrossRef CAS.
  67. P. S. Bagus, C. J. Nelin, W. Muller, M. R. Philpott and H. Seki, Phys. Rev. Lett., 1987, 58, 559 CrossRef CAS.
  68. M. F. Baba, C. Mijoule, N. Godbout and D. R. Salahub, Surf. Sci., 1994, 316, 349 CrossRef.
  69. C. Bureau, M. Defranceschi, J. Delhalle, G. Lecayon and D. R. Salahub, J. Mol. Struct. (Theochem.), 1995, 330, 279 CrossRef CAS.
  70. R. J. Nichols, in Adsorption of Molecules at Metal Electrode, ed. J. Lipkowski and P. N. Ross, VCH, Weinheim, 1992, p. 347 Search PubMed.
  71. E. Oldfield, J. Magn. Reson. A, 1994, 107, 255 CrossRef CAS.
  72. NMR Techniques in Catalysis, ed. A. T. Bell and A. Pines, Dekker, New York, 1994 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.