Reactive scattering of ground-state and electronically excited oxygen atoms on a liquid hydrocarbon surface

(Note: The full text of this document is currently only available in the PDF Version )

Donna J. Garton, Timothy K. Minton, Michele Alagia, Nadia Balucani, Piergiorgio Casavecchia and Gian Gualberto Volpi


Abstract

We have directed a supersonic beam of atomic oxygen containing a large concentration of ground-state O(3P) and a small percentage of electronically excited O(1D) at a continuously refreshed liquid film of a long-chain saturated hydrocarbon, squalane (C30H62). Angularly resolved flux and energy distributions of reactively scattered products revealed that the dominant volatile reaction product is the OH radical, which can be formed by an Eley–Rideal direct-reaction mechanism or by a process that leads to trapping and desorption of the initial product. Both of these processes occur with comparable probabilities. A second product, H2O, is thought to be formed by abstraction of a hydrogen atom from the hydrocarbon chain by the primary OH product. The H2O product also exits the surface via non-thermal and thermal mechanisms, although the thermal mechanism dominates.


References

  1. F. D. Egitto and L. J. Matienzo, IBM J. Res. Develop., 1994, 38, 423 Search PubMed; E. M. Liston, J. Adhes., 1989, 30, 199 Search PubMed.
  2. M. A. Hartney, D. W. Hess and D. S. Soane, J. Vac. Sci. Technol. B, 1989, 7, 1 CrossRef CAS.
  3. O. Joubert, J. Pelletier and Y. Arnal, J. Appl. Phys., 1989, 65, 5096 CrossRef; G. S. Selwyn, J. Appl. Phys., 1986, 60, 2771 CrossRef CAS.
  4. C. M. Chan, T. M. Ko and H. Hiraoka, Surf. Sci. Rep., 1996, 24, 1 CrossRef CAS; A. S. Hoffman, J. Appl. Polym. Sci. Appl. Polym. Symp., 1988, 42, 251 Search PubMed.
  5. L. J. Leger, NASA TM-58246, 1982; L. J. Leger and J. T. Visentine, Aerosp. Am., 1986, 24, 32 Search PubMed; L. E. Murr and W. H. Kinard, Am. Sci., 1993, 81, 152 Search PubMed.
  6. T. K. Minton, JPL Publication 95-17, Jet Propulsion Lab., Pasadena, CA, 1995.
  7. A. Miyoshi, K. Tsuchiya, N. Yamauchi and H. Matsui, J. Phys. Chem., 1994, 98, 11452 CrossRef CAS.
  8. P. Andresen and A. C. Luntz, J. Chem. Phys., 1980, 72, 5842 CrossRef CAS.
  9. N. J. Dutton, I. W. Fletcher and J. C. Whitehead, Mol. Phys., 1984, 52, 475 CAS.
  10. G. M. Sweeney, A. Watson and K. G. McKendrick, J. Chem. Phys., 1997, 106, 9172 CrossRef CAS.
  11. P. Michaud, G. Paraskevopoulos and R. J. Cvetanović, J. Phys. Chem., 1974, 78, 1457 CrossRef CAS.
  12. H. Yamazaki and R. J. Cvetanović, J. Chem. Phys., 1964, 41, 3703 CrossRef CAS.
  13. G. Paraskevopoulos and R. J. Cvetanović, J. Chem. Phys., 1969, 50, 590 CrossRef.
  14. G. Paraskevopoulos and R. J. Cvetanović, J. Chem. Phys., 1970, 52, 5821 CrossRef CAS.
  15. C.-L. Lin and W. B. DeMore, J. Phys. Chem., 1973, 77, 863 CrossRef CAS; R. D. van Zee and J. C. Stephenson, J. Chem. Phys., 1995, 102, 6946 CrossRef CAS.
  16. A. C. Luntz, J. Chem. Phys., 1980, 73, 1143 CrossRef CAS.
  17. C. R. Park and J. R. Wiesenfeld, J. Chem. Phys., 1991, 95, 8166 CrossRef CAS.
  18. M. Brouard and J. P. Simons, in Advanced Series in Physical Chemistry: Vol. 6, The Chemical Dynamics and Kinetics of Small Radicals, ed. A. F. Wagner and K. Liu, World Scientific, Singapore, 1995, ch. 18 Search PubMed.
  19. Y. Rudich, Y. Hurwitz, G. J. Frost, V. Vaida and R. Naaman, J. Chem. Phys., 1993, 99, 4500 CrossRef CAS.
  20. Y. Rudich, Y. Hurwitz, S. Lifson and R. Naaman, J. Chem. Phys., 1993, 98, 2936 CrossRef CAS.
  21. P. Patiño, F. E. Hernández and S. Rondón, Plasma Chem. Plasma Process., 1995, 15, 159 CAS.
  22. J. G. Harris, J. Phys. Chem., 1992, 96, 5077 CrossRef CAS.
  23. Y. T. Lee, J. D. McDonald, P. R. LeBreton and D. R. Herschbach, Rev. Sci. Instrum., 1969, 40, 1402 CrossRef CAS.
  24. S. J. Sibener, R. J. Buss, C. Y. Ng and Y. T. Lee, Rev. Sci. Instrum., 1980, 51, 167 CrossRef CAS; P. Casavecchia, N. Balucani and G. G. Volpi, in Advanced Series in Physical Chemistry: Vol. 6, The Chemical Dynamics and Kinetics of Small Radicals, ed. A. F. Wagner and K. Liu, World Scientific, Singapore, 1995, p. 365 Search PubMed.
  25. K. Sköld, Nucl. Instrum. Methods, 1968, 63, 114 Search PubMed.
  26. M. Alagia, V. Aquilanti, D. Ascenzi, N. Balucani, D. Cappelletti, L. Cartechini, P. Casavecchia, F. Pirani, G. Sanchini and G. G. Volpi, Isr. J. Chem., 1997, in press. (Special issue on molecular beams) Search PubMed.
  27. M. Alagia, N. Balucani, P. Casavecchia, D. Stranges and G. G. Volpi, J. Chem. Soc., Faraday Trans., 1995, 91, 575 RSC; N. Balucani, P. Casavecchia, D. Stranges and G. G. Volpi, in preparation.
  28. M. E. Saeker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson, Science, 1991, 252, 1421 CAS.
  29. Signals detected at m/z= 17 contained a contribution from ionizer fragmentation of H2O products that was determined to be 21% of the signal detected at m/z= 18. Even when this contribution was subtracted from the m/z= 17 TOF distributions (as has been done in all data presented here), they clearly show two components.
  30. C. T. Rettner and D. J. Auerbach, Science, 1994, 263, 365 CAS.
  31. J. T. Herron, J. Phys. Chem. Ref. Data, 1988, 17, 967 CAS.
  32. W. B. DeMore, J. Phys. Chem., 1969, 73, 391 CrossRef CAS.
  33. J. E. Hurst, C. A. Becker, J. P. Cowin, K. C. Janda, L. Wharton and D. J. Auerbach, Phys. Rev. Lett., 1979, 43, 1175 CrossRef CAS; C. T. Rettner, E. K. Schweizer and C. B. Mullins, J. Chem. Phys., 1989, 90, 3800 CrossRef CAS.
  34. J. P. Abbatt, K. L. Demerjian and J. G. Anderson, J. Phys. Chem., 1990, 94, 4566 CrossRef CAS; R. Atkinson, Chem. Rev., 1986, 86, 69 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.