Chemical reaction dynamics when the Born–Oppenheimer approximation fails Understanding which changes in the electronic wavefunction might be restricted

(Note: The full text of this document is currently only available in the PDF Version )

Nancy R. Forde, Tanya L. Myers and Laurie J. Butler


Abstract

Whether a reaction is occurring in the gas phase or condensed phase, electronically nonadiabatic effects can become important if the adiabatic reaction coordinate requires a considerable change in the electronic wavefunction. The experiments and analysis presented here seek to make progress on a difficult and important problem, that of developing a back-of-the-envelope method to predict which energetically allowed products are favoured or disfavoured when significant electronic configuration changes are required to access one or all of the possible product channels. By examining the off-diagonal matrix elements responsible for coupling electronic configurations in the initially excited molecule with those of the products, we begin to formulate a hierarchy of what electronic configurations are strongly vs. weakly coupled. Hence, the paper focusses on understanding how an electronic wavefunction is most likely to change during a chemical reaction when it cannot adjust adiabatically during the nuclear dynamics.

We begin by analyzing the results of two prior series of experiments in order to develop a hierarchy of propensity rules for electronic configuration changes from reactant to products. Analysis of experimental and computational results on the competition between C–Br fission and C–Cl fission in nOπ*C=O excited Br(CH2)2COCl and on the ππ* photofragmentation channels of nitric acid suggest the following. If the one-electron configuration interaction matrix elements between the reactant electronic configuration and a product electronic configuration are zero, then the reaction is strongly susceptible to nonadiabatic suppression of the reaction rate and/or appearance of nonadiabatic asymptotic products. One must then analyze the remaining two-electron configuration interaction (Förster- and Dexter-type) matrix elements. If the two-electron change required to couple the reactant and product electronic configurations involves simultaneous configuration changes on two spatially/electronically isolated functional groups, then that product channel is strongly disfavoured. We show why this is the case by examining the two-electron integrals for C–Br fission in Br(CH2)2COCl and for the forbidden NO2(12B1)+OH(A″) channel from ππ* excited nitric acid, comparing them to those for the NO2(12B2)+OH(A′) channel where the orbitals involved are localized on the same functional moiety. This hierarchy in electronic coupling motivates the introduction of a ‘restricted adiabatic’ correlation diagram to predict which product channels are electronically accessible.

In the final section of this paper we present new results on the photodissociation of N,N-dimethylformamide following πnbπ* excitation at 193 nm, where we test the ideas developed from analysis of the previous work. Our measurement of the photofragment velocity and angular distributions of the dissociation products reveals that dissociation pathway to form HCO +N(CH3)2 results in formation of HCO([X with combining tilde])+N(CH3)2(Ã) but not HCO(Ã) +N(CH3)2([X with combining tilde]). As both are energetically allowed product channels in the singlet A′ manifold, the selectivity may be analyzed with respect to the required change in electronic configuration to access each asymptotic product channel. To understand the experimental results in the context of the model developed from the prior work, we consider both one-electron and two-electron contributions to the configuration interaction matrix elements between the reactant and product electronic configurations to determine which product channels are most likely to be accessed.


References

  1. L. J. Butler, Annu. Rev. Phys. Chem., 1998, 49 CrossRef CAS in press.
  2. M. Born and R. Oppenheimer, Ann. Phys., 1927, 84, 457 CAS.
  3. J. C. Tully, in Dynamics of Molecular Collisions Pt. B, ed. W. H. Miller, Plenum Press, New York, 1976, p. 217 Search PubMed.
  4. D. R. Yarkony, Rev. Mod. Phys., 1996, 68, 985 CrossRef.
  5. The current status of statistical transition state theory is reviewed by D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, J. Phys. Chem., 1996, 100, 12771 Search PubMed.
  6. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley Interscience, London, 1972 Search PubMed.
  7. P. W. Kash, G. C. G. Waschewsky, L. J. Butler and M. M. Francl, J. Chem. Phys., 1993, 99, 4479 CrossRef CAS.
  8. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag-Chemie, Weinheim, 1970 Search PubMed; S. S. Shaik, J. Am. Chem. Soc., 1981, 103, 3692 Search PubMed.
  9. G. C. G. Waschewsky, P. W. Kash, T. L. Myers, D. C. Kitchen and L. J. Butler, J. Chem. Soc., Faraday Trans., 1994, 90, 1581 RSC.
  10. M. D. Person, P. W. Kash, S. A. Schofield and L. J. Butler, J. Chem. Phys., 1991, 95, 3843 CrossRef CAS; M. D. Person, P. W. Kash and L. J. Butler, J. Chem. Phys., 1992, 97, 355 CrossRef CAS; P. W. Kash, G. C. G. Waschewsky, L. J. Butler and Erratum, J. Chem. Phys., 1994, 100, 4017 CrossRef CAS.
  11. (a)J. Michl and V. Bonačić-Koutecký, Electronic Aspects of Organic Photochemistry, Wiley, New York, 1990, p. 276; (b)p. 85 Search PubMed.
  12. T. L. Myers, N. R. Forde and L. J. Butler, J. Chem. Phys., 1997, 107, 536.
  13. A. Schiffman, D. D. Nelson Jr. and D. J. Nesbitt, J. Chem. Phys., 1993, 98, 6935 CrossRef CAS.
  14. P. Felder, X. Yang and J. R. Huber, Chem. Phys. Lett., 1993, 215, 221 CrossRef CAS.
  15. R. Kenner, F. Rohrer, T. Papenbrock and F. Stuhl, J. Phys. Chem., 1986, 90, 1294 CrossRef CAS.
  16. A. A. Turnipseed, G. L. Vaghjiani, J. E. Thompson and A. R. Ravishankara, J. Chem. Phys., 1992, 96, 5887 CrossRef CAS.
  17. P.-Y. Yeh, G.-H. Leu, Y.-P. Lee and I.-C. Chen, J. Chem. Phys., 1995, 103, 4879 CrossRef CAS.
  18. G.-H. Leu, C.-W. Hwang and I.-C. Chen, Chem. Phys. Lett., 1996, 257, 481 CrossRef CAS.
  19. A. Jacobs, K. Kleinermanns, H. Kuge and J. Wolfrum, J. Chem. Phys., 1983, 79, 3162 CrossRef CAS.
  20. The adiabatic asymptote of the 21A' state was mislabelled in Y. Y. Bai and G. A. Segal, J. Chem. Phys., 1990, 92, 7479 Search PubMed but corrected in ref. 12.
  21. A. M. Graña, T. J. Lee and M. Head-Gordon, J. Phys. Chem., 1995, 99, 3493 CrossRef CAS.
  22. D. R. Maurice and M. Head-Gordon, personal communication.
  23. L. E. Harris, J. Chem. Phys., 1973, 58, 5615 CrossRef CAS.
  24. C. F. Jackels and E. R. Davidson, J. Chem. Phys., 1976, 65, 2941 CrossRef CAS.
  25. S. Hassoon, H. Lustig, M. B. Rubin and S. Speiser, J. Phys. Chem., 1984, 88, 6367 CrossRef CAS.
  26. N. R. Forde and L. J. Butler, in preparation.
  27. A. M. Wodtke and Y. T. Lee, J. Phys. Chem., 1985, 89, 4744 CrossRef CAS; Y. T. Lee, J. D. McDonald, P. R. LeBreton and D. R. Herschbach, Rev. Sci. Instrum., 1969, 40, 1402 CrossRef CAS; M. D. Person, PhD Thesis, Department of Chemistry, University of Chicago, IL, 1991.
  28. Enthalpies of reaction listed are calculated using heats of formation at 298 K. Correction to 0 K involves the order of 1–2 kcal mol–1 for each reaction. Because few of these heats of formation are available at 0 K, we quote the more reliable 298 K values. Heats of formation are taken from J. B. Pedley and J. Rylance, Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex Press, Brighton, 1977[HCON(CH3)2Search PubMed; Handbook of Chemistry and Physics, 64th edn., ed. Robert C. Weast, CRC Press, Boca Raton, FL, 1983[N(CH3)2Search PubMed; H. Y. Afeefy, J. F. Liebman and S. E. Stein, in NIST Standard Reference Database Number 69, ed. W. G. Mallard and J. P. Linstrom, National Institute of Standards and Technology, Gaithersburg, MD, 1997(http://webbook.nist.gov)(HCO). ΔH° for HCONCH3+ CH3 is approximated by the bond dissociation energy of CH3—NH2, because thermodynamic information on the heat of formation of HCONCH3 is not available Search PubMed.
  29. M.-C. Chuang, M. F. Foltz and C. B. Moore, J. Chem. Phys., 1987, 87, 3855 CrossRef CAS; A. F. Wagner and J. M. Bowman, J. Phys. Chem., 1987, 91, 5314 CrossRef CAS; R. B. Timonen, E. Ratjczak, D. Gutman and A. F. Wagner, J. Phys. Chem., 1987, 91, 5325 CrossRef CAS; R. Vadusev and R. N. Zare, J. Chem. Phys., 1982, 76, 5267 CrossRef CAS; B. M. Stone, M. Noble and E. K. C. Lee, Chem. Phys. Lett., 1985, 118, 83 CrossRef CAS.
  30. C. Jungen, K.-E. J. Hallin and A. J. Merer, Mol. Phys., 1980, 40, 25 CAS.
  31. R. N. Zare, Mol. Photochem., 1972, 4, 1 Search PubMed.
  32. L. Serrano-Andrés and M. Fülscher, J. Am. Chem. Soc., 1996, 118, 12190 CrossRef CAS.
  33. S. Nagakura, Mol. Phys., 1960, 3, 105 CAS.
  34. K. Kaya and S. Nagakura, Theor. Chim. Acta, 1967, 7, 117 CAS.
  35. See references in M. B. Robin, Higher Excited States of Polyatomic Molecules, vol. II, Academic Press, New York, 1975, pp. 135–6 Search PubMed.
  36. H. Torii and M. Tasumi, J. Phys. Chem. B, 1997, 101, 466 CrossRef CAS.
  37. L. C. Mayne and B. S. Hudson, J. Phys. Chem., 1991, 95, 2962 CrossRef CAS.
  38. K. Tanaka and E. R. Davidson, J. Chem. Phys., 1979, 70, 2904 CrossRef CAS.
  39. X. Zhou, J. A. Krauser, D. R. Tate, A. S. VanBuren, J. A. Clark, P. R. Moody and R. Liu, J. Phys. Chem., 1996, 100, 16822 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.