Runjun Li, Karl A. Hanold, Mark C. Garner, A. Khai Luong and Robert E. Continetti
Considerable insights into the dynamics of both ionic (photodissociation) and neutral (dissociative photodetachment) decomposition pathways of O4- and O6- have been gained using photoelectron and photofragment translational spectroscopy in a fast-ion beam. The O4- data at 532 nm reveal a novel process involving sequential photodetachment of an electron with a near-zero binding energy from photodissociating O4-. Studies of O6- at 532 nm reveal that addition of a third O2 to the O4- core leads to a dramatic change in the photodissociation dynamics, producing highly vibrationally excited O2- photofragments not observed in the case of O4-. At 355 nm, both O4- and O6- yield vibrationally excited O2- photofragments, as observed by autodetachment of the nascent O2- (v5)→O2+e-. At 266 nm, photofragment time-of-flight (TOF) measurements on O6- and O4- show that the dynamics of dissociative photodetachment in O6- are only slightly perturbed relative to O4-. The anisotropic product angular distribution previously observed in O4- is observed to persist in the three-body neutral decomposition O6-+hν→O2+O2+O2+e-. The origins of these diverse phenomena in O4- and O6- are discussed.