Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients

(Note: The full text of this document is currently only available in the PDF Version )

Jay W. Grate, Steven N. Kaganove and Venkat R. Bhethanabotla


Abstract

New data are reported on vapour sorption by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices. The polymers examined were poly(isobutylene), PIB, poly(epichlorohydrin), PECH, poly(butadiene), PBD, and poly(dimethylsiloxane), PDMS. The test vapours for the TSM sensor experiments were benzene, toluene, hexane, cyclohexane, chloroform, dichloromethane, carbon tetrachloride and butan-2-one, tested at several concentrations from P/P0=ca. 0.03 to 0.64. Measurements on the TSM devices using oscillators were complemented with measurements by impedance analysis. Acoustic wave sensor data were converted to apparent partition coefficients calculated assuming the response was due to mass-loading only. Values derived from SAW and TSM measurements were compared with one another, and with other partition coefficient data determined by non-acoustic wave techniques. It was found that TSM devices coated with PIB, PECH, and PBD (film thickness <1 µm) behaved as gravimetric sensors at low vapour concentrations. The PDMS-coated TSM sensor displayed significant losses and unusual behaviour suggestive of other effects. SAW sensors with PIB and PECH films gave responses indicating that modulus effects were contributing to the response, in addition to mass-loading effects. This enhancement appeared to be at least a factor of two, suggesting the mass-loading accounted for ca. 50% of the SAW response. The responses of PBD and PDMS-coated SAW devices were not enhanced relative to the expected mass-loading responses. Differences in behaviour among the test polymers on SAW devices are discussed in terms of the differing viscoelastic properties of these materials.


References

  1. W. H. King, Anal. Chem., 1964, 36, 1735 CrossRef CAS.
  2. H. Wohltjen and R. E. Dessy, Anal. Chem., 1979, 51, 1465 CrossRef CAS.
  3. J. W. Grate and M. H. Abraham, Sens. Actuators B, 1991, 3, 85 CrossRef.
  4. J. W. Grate, S. J. Martin and R. M. White, Anal. Chem., 1993, 65, 940A CAS.
  5. J. W. Grate, S. J. Martin and R. M. White, Anal. Chem., 1993, 65, 987A CAS.
  6. J. W. Grate and G. C. Frye, in Sensors Update, ed. H. Baltes, W. Goepel and J. Hesse, VCH, Weinheim, 1996, vol. 2, pp. 37–83 Search PubMed.
  7. J. W. Grate, M. Klusty, R. A. McGill, M. H. Abraham, G. Whiting and J. Andonian-Haftvan, Anal. Chem., 1992, 64, 610 CrossRef CAS.
  8. J. W. Grate, A. Snow, D. S. Ballantine, H. Wohltjen, M. H. Abraham, R. A. McGill and P. Sasson, Anal. Chem., 1988, 60, 869 CrossRef CAS.
  9. M. H. Abraham, G. S. Whiting, J. Andonian-Haftvan, J. W. Steed and J. W. Grate, J. Chromatogr., 1991, 588, 361 CrossRef CAS.
  10. M. H. Abraham, J. Andonian-Haftvan, C. M. Du, V. Diart, G. Whiting, J. W. Grate and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, 1995, 369 RSC.
  11. M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73 RSC.
  12. J. W. Grate, M. H. Abraham and R. A. McGill, in Handbook of Biosensors: Medicine, Food, and the Environment, ed. E. Kress-Rogers and S. Nicklin, CRC Press, Boca Raton, FL, 1996, pp. 593–612 Search PubMed.
  13. J. W. Grate, S. J. Patrash and M. H. Abraham, Anal. Chem., 1995, 67, 2162 CrossRef CAS.
  14. J. W. Grate, M. H. Abraham and R. A. McGill, in Polymer Films in Sensor Applications, ed. G. Harsanyi, Technomic Publishing, Lancaster, PA, 1995, pp. 136–149 Search PubMed.
  15. J. W. Grate, M. H. Abraham, C. M. Du, R. A. McGill and W. J. Shuely, Langmuir, 1995, 11, 2125 CrossRef CAS.
  16. J. W. Grate, S. J. Patrash, M. H. Abraham and C. M. Du, Anal. Chem., 1996, 68, 913 CrossRef CAS.
  17. S. J. Martin and G. C. Frye, Proc. 1992 Solid State Sensor and Actuator Workshop, 1992, 27 Search PubMed.
  18. S. J. Martin, G. C. Frye and S. D. Senturia, Anal. Chem., 1994, 66, 2201 CrossRef CAS.
  19. D. A. Buttry and M. D. Ward, Chem. Rev., 1992, 92, 1355 CrossRef CAS.
  20. M. Yang and M. Thompson, Anal. Chem., 1993, 65, 1158 CrossRef CAS.
  21. M. Yang, M. Thompson and W. C. Duncan-Hewitt, Langmuir, 1993, 9, 802 CrossRef CAS.
  22. S. J. Martin, V. E. Granstaff and G. C. Frye, Anal. Chem., 1991, 63, 2272 CrossRef CAS.
  23. S. J. Martin and G. C. Frye, Proc. IEEE Ultrason. Symp., 1991, 393 Search PubMed.
  24. S. J. Patrash and E. T. Zellers, Anal. Chem., 1993, 65, 2055 CrossRef CAS.
  25. K. Bodenhofer, A. Hierlemann, G. Noetzel, U. Weimar and W. Goepel, Anal. Chem., 1996, 68, 2210 CrossRef.
  26. Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan and J. Greenblatt, Anal. Chem., 1997, 69, 2848 CrossRef CAS.
  27. R. C. Reid, J. M. Prausnitz and B. W. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 4th edn., 1987, p. 67 Search PubMed.
  28. J. W. Grate and M. Klusty, Anal. Chem., 1991, 63, 1719 CrossRef CAS.
  29. W. D. Bowers, R. Duong and R. L. Chuan, Rev. Sci. Instrum., 1991, 62, 1624 CrossRef CAS.
  30. J. W. Grate, S. W. Wenzel and R. M. White, Anal. Chem., 1991, 63, 1552 CrossRef CAS.
  31. J. W. Grate and M. Klusty, Vapor Stream Dilution by Pulse Width Modulation, Naval Research Laboratory, Memorandum Report 6762, 1990 Search PubMed.
  32. J. R. Conder and C. L. Young, Physicochemical Measurements by Gas Chromatography, Wiley, New York, 1979 Search PubMed.
  33. W. Hao, H. S. Elbro and P. Alessi, Polymer Solution Data Collection, DECHEMA, Frankfurt, 1992, vol. XIV Search PubMed.
  34. D. S. Abrams and J. M. Prausnitz, AIChE. J., 1975, 21, 116 CrossRef CAS.
  35. The following journals were searched – years/journals: 1987–mid 1996/I & EC Research, J. Appl. Polym. Sci., J. Chromatography, J. Phys. Chem.; 1988–mid 1996/AIChE. J, Ber. Bunsen-Ges. Phys. Chem., J. Chem. Eng. Data, J. Chem. Soc., Faraday Trans. 1, Macromolecules, Polymer, Polym. Eng. Sci., Polym. J.; 1989–mid 1996/Fluid Phase Equilib.; 1988–1992/Br. Polym. J., Eur. Polym. J., J. Polym. Sci. Polym. Phys.; 1991–1993/J. Am. Chem. Soc Search PubMed.
  36. R. A. McGill, PhD Thesis, University of Surrey, 1988.
  37. P. A. Martos and J. Pawliszyn, Anal. Chem., 1997, 69, 206 CrossRef CAS.
  38. H. Masuoka, N. Murashige and M. Yorizane, Fluid Phase Equilib., 1984, 18, 155 CrossRef CAS.
  39. B. E. Eichinger and P. J. Flory, Trans. Faraday Soc., 1968, 64, 2053 RSC.
  40. B. E. Eichinger and P. J. Flory, Trans. Faraday Soc., 1968, 64, 2061 RSC.
  41. G. J. Price, J. E. Guillet and J. H. Purnell, J. Chromatogr., 1986, 354, 57.
  42. C. E. H. Bawn and R. D. Patel, Trans. Faraday Soc., 1956, 52, 1664 RSC.
  43. R. S. Jessup, J. Res. Natl. Bur. Stand., 1958, 60, 47 Search PubMed.
  44. M. Tian and P. Munk, J. Chem. Eng. Data, 1994, 39, 742 CrossRef CAS.
  45. I. H. Romdhane and R. P. Danner, J. Chem. Eng. Data, 1991, 36, 15 CrossRef CAS.
  46. H.-S. Tseng, P.-C. Wong, D. R. Lloyd and J. W. Barlow, Polym. Eng. Sci., 1987, 27, 1141 Search PubMed.
  47. D. Booth, G. Gee, N. N. Jones and W. D. Taylor, Polymer, 1964, 5, 353.
  48. Patrash and Grate observed that PIB KSAW values for vapours such as toluene were twice KTSM values, and that the KTSM values were approximately twice IGC K values. The data for PIB on a TSM device were published in Grate, ref. 16. Finklea and Grate also observed the same result, and Finklea went on to demonstrate that impedance analyser results on PIB-coated TSM devices did not indicate any behaviour other than mass-loading.
  49. J. W. Grate, S. W. Wenzel and R. M. White, Anal. Chem., 1992, 64, 413 CrossRef CAS.
  50. N. G. McCrum, B. E. Read and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Wiley, New York, 1967 Search PubMed.
  51. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edn., 1980 Search PubMed.
  52. M. Shen and F. A. Kaniskin, J. Polym. Sci.: Polym. Phys., 1973, 11, 2261 Search PubMed.
  53. Patrash and Grate, unpublished results.
  54. The properties of a polymer sample can be affected by additives in particular samples, such a plasticizers that will influence viscoelastic properties and possibly vapour sorption, and stabilizers, which may alter sorption properties, especially at infinite dilution. Properties may also vary due to differences between an actual material and the nominal polymer structure. Abraham and co-workers found that two commercial samples of OV25, for example, were significantly different in sorption properties and chemically different as revealed by FTIR. The log K value for pentan-1-ol was different by 0.45 log units on the two OV25 samples (ref. 9).
Click here to see how this site uses Cookies. View our privacy policy here.