Use of combined shear and pressure acoustic waves to study interfacial and bulk viscoelastic effects in aqueous polymeric gels and the influence of electrode potentials

(Note: The full text of this document is currently only available in the PDF Version )

Subrayal M. Reddy, John P. Jones and T. John Lewis


Abstract

AT-cut quartz crystals operating in the thickness-shear mode at 10 MHz have been used to study the viscoelastic changes occurring during the polymerization and gelling of acrylamide solutions. The gelling process is described in terms of the storage and loss moduli, G′ and G″, or in terms of the shear wave velocity and the attenuation coefficient. The solutions are quite elastic (G′≈G″) and both moduli increase with gelling. These effects are attributed to hydrogen bonding. The attenuation coefficient decreases abruptly at the onset of gelling. The effective penetration of the shear wave increases from 2.6 µm in solution to 3.4 µm in the gel.

The moduli are greatly influenced by the application of a small bias voltage across the gel and this is related to the injection of ions into the shear wave sensing region. Abrupt switching of the bias induces large transient changes in the moduli that are attributed to Lippmann electrocapillary effects at the gel/crystal electrode interface.

It is also demonstrated that the crystal produces longitudinal pressure waves, which propagate through the gel and produce secondary resonances. They have a marked effect on the interpretation of the shear wave impedance and can be used to monitor changes in bulk properties through the gelling process.


References

  1. S. J. Martin and G. C. Frye, Proc. IEEE Ultrason. Symp., 1991, 343 Search PubMed.
  2. C. Barnes, C. D'Silva, J. P. Jones and T. J. Lewis, Sens. Actuators B, 1991, 3, 295 CrossRef.
  3. J. P. Jones and T. J. Lewis, J. Chem. Soc., Faraday Trans., 1995, 91, 3147 RSC.
  4. H. F. Hager, G. A. Escobar and P. D. Verge, J. Appl. Phys., 1986, 59, 3228 CrossRef CAS.
  5. Faraday Discuss., 1995, 101 Search PubMed.
  6. Polymer Gels, ed. D. DeRossi, K. Kajiwara, Y. Osada and A. Yamauchi, Plenum Press, New York, 1991 Search PubMed.
  7. T. Tanaka, L. O. Hocker and G. B. Benedek, J. Chem. Phys., 1973, 59, 5151 CrossRef CAS.
  8. Y. Wada, H. Sasabe and M. Tomono, Biopolymers, 1967, 5, 887 CrossRef CAS.
  9. C. Barnes and T. J. Lewis, J. Acoust. Soc. Am., 1991, 90, 1287 CAS.
  10. E. J. Calvo, C. Denilowicz and R. Etchenique, J. Chem. Soc., Faraday Trans., 1995, 91, 4083 RSC.
  11. T. Tanaka, Sci. Am., 1981, 244, 125 Search PubMed.
  12. R. D. Mindlin, J. Appl. Phys., 1951, 22, 316.
  13. S. M. Reddy, J. P. Jones and T. J. Lewis, submitted for publication.
  14. J. C. Bacri and R. Rajaonarison, J. Phys. Lett., 1979, 40, L-6 Search PubMed.
  15. C. Schwittay, M. Mours and H. H. Winter, Faraday Discuss., 1995, 101, 93 RSC.
  16. G. L. Gaines, Jr., Insoluble Monolayers at Liquid-Gas Interfaces, Interscience, New York, 1965, p. 23 Search PubMed.
  17. S. N. Vinogradov and R. H. Linnell, Hydrogen Bonding, Van Nostrand, New York, 1971, p. 239 Search PubMed.
  18. S. B. Ross-Murphy, in Polymer Gels, ed. D. DeRossi, K. Kajiwara, Y. Osada and A. Yamauchi, Plenum Press, New York, 1991, p.21 Search PubMed.
  19. E. Collinson, F. S. Dainton and G. S. McNaughton, Trans. Faraday Soc., 1957, 53, 476 RSC.
  20. D. L. Johnson, J. Chem. Phys., 1982, 77, 1531 CrossRef CAS.
  21. G. Nisato, R. Skouri, F. Schosseler, J.-P. Munch and S. J. Candau, Faraday Discuss., 1995, 101, 133 RSC.
  22. J. L. Hunter, J. Acoust. Soc. Am., 1950, 22, 243 CAS.
  23. R. W. Zurilla, R. K. Sen and E. Yeager, J. Electrochem. Soc., 1978, 125, 1103 CAS.
  24. A. W. Adamson, Physical Chemistry, John Wiley, New York, 4th edn., 1982, p. 206 Search PubMed.
  25. I. Marcos, Electroanal. Chem. Interfacial Electrochem., 1975, 62, 313 CrossRef.
  26. R. N. Thurston, in Waves in Solids, Handbook of Physics, Vol. 6a/4, Mechanics of Solids IV, ed. C. Truesdell, Springer-Verlag, Berlin, 1974, p. 268 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.