Influence of acoustic wave excitation on CO oxidation over a Pt{110} single crystal

(Note: The full text of this document is currently only available in the PDF Version )

S. Kelling, T. Mitrelias, Y. Matsumoto, V. P. Ostanin and D. A. King


Abstract

A unique ultra-high vacuum (UHV) compatible excitation system combined with an advanced ultra-high amplitude and frequency resolution acoustic spectrometer has been designed and constructed to permit accurate studies of the fundamental mechanism by which acoustic excitation influences heterogeneous catalytic reactions. A clean Pt{110} thin film single-crystal catalyst was excited with low-energy acoustic waves (Rayleigh waves) under high vacuum and UHV conditions to increase the reaction rate for carbon monoxide oxidation. A remarkable six-fold increase in the chemical activity was observed. By using a new, very accurate method to monitor the sample temperature using high-resolution acoustic wave resonance spectroscopy (HRAWRS), a non-thermal acoustic-wave-induced enhancement of the reaction rate is clearly demonstrated. The pressure and temperature dependences of the enhancement provide some insight into the mechanism by which acoustic waves enhance catalytic reactions on solid surfaces.


References

  1. For a review see: M. Gruyters, T. Mitrelias and D. A. King, Appl. Phys. A, 1995, 61, 243 Search PubMed.
  2. T. J. Mason and J. P. Lorimer, Practical Sonochemistry, Ellis Horwood, New York, 1991 Search PubMed.
  3. B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman and S. J. Putterman, J. Acoust. Soc. Am., 1992, 91, 3061.
  4. R. J. Zanetti, Chem. Eng., 1992, 99, 37 Search PubMed.
  5. K. S. Suslick, Science, 1990, 247, 1439 CrossRef CAS.
  6. N. A. Maksimenko and M. A. Margulis, Russ. J. Phys. Chem., 1992, 66, 396 Search PubMed.
  7. Y. Inoue, Y. Matsukawa and K. Sato, J. Chem. Phys., 1992, 96, 2222 CAS.
  8. Y. Inoue and Y. Matsukawa, Chem. Phys. Lett., 1992, 198, 246 CrossRef CAS.
  9. Y. Inoue, J. Chem. Soc., Faraday Trans., 1994, 90, 815 RSC.
  10. Y. Inoue, Y. Watanabe and T. Noguchi, J. Phys. Chem., 1995, 99, 9898 CrossRef CAS.
  11. Y. Inoue, M. Matsukawa and H. Kawaguchi, J. Chem. Soc., Faraday Trans., 1992, 88, 2923 RSC.
  12. T. Mitrelias, S. Kelling, R. I. Kvon, V. P. Ostanin and D. A. King, Surf. Sci., submitted Search PubMed.
  13. S. Kelling, T. Mitrelias, Y. Matsumoto, V. P. Ostanin and D. A. King, J. Chem. Phys., in press Search PubMed.
  14. T. Mitrelias, S. Kelling, M. Gruyters and D. A. King, Appl. Phys. Lett., 1996, 69, 3677 CrossRef CAS.
  15. T. Mitrelias, V. P. Ostanin, M. Gruyters and D. A. King, Appl. Surf. Sci., 1996, 101, 105 CrossRef.
  16. J. L. Falconer and R. J. Madix, Surf. Sci., 1985, 160, 393.
  17. Y. Y. Yeo, C. E. Wartnaby and D. A. King, Science, 1995, 268, 1731.
  18. V. N. Brezhnev, A. I. Boronin, V. P. Ostanin, V. S. Tupikov and A. N. Belyaev, Chem. Phys. Lett., 1992, 191, 379 CrossRef CAS.
  19. Y. Inoue, personal communication.
  20. S. Ladas, R. Imbihl and G. Ertl, Surf Sci., 1988, 197, 153 CrossRef CAS.
  21. M. Hirano and K. Shinjo, Phys. Rev. B, 1990, 41, 11837 CrossRef CAS.
  22. K. Shinjo and M. Hirano, Surf. Sci., 1993, 283, 473 CrossRef CAS.
  23. M. Hirano, K. Shinjo, R. Kaneko and Y. Murata, Phys. Rev. Lett., 1997, 78, 1448 CrossRef CAS.
  24. H. H. Rotermund, Surf. Sci., 1993, 283, 87 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.