Electrochemical quartz crystal microbalance in modern corrosion research Study of the pretreatment of galvanized steel

(Note: The full text of this document is currently only available in the PDF Version )

Karl-Heinz Stellnberger, Michael Wolpers, Thomas Fili, Cedric Reinartz, Thomas Paul and and Martin Stratmann


Abstract

The electrochemical quartz crystal microbalance (EQCM) is applied in order to study the technical pretreatment processes of galvanized steel such as alkaline cleaning, chromating and phosphating in modern trication solutions. The mass change associated with these reactions is monitored insitu under conditions which are very similar to those of a coil-coating line. It is shown that cleaning of the zinc surface in an alkaline cleaning solution is a two-step process: removal of the zinc oxide layer by a chemical dissolution followed by electrochemical dissolution of zinc, the rate of which is controlled by the diffusion of zincate ions into the electrolyte. During phosphating of the sample, three subsequent steps are observed: zinc dissolution during the first seconds followed by precipitation of a phosphate layer and then cementation of Ni, which leads again to increasing dissolution of the base material.


References

  1. E. Seydel, KVG Neckarbischofsheim, personal communication.
  2. W. Rausch, in Die Phosphatierung von Metallen, Eugen E. Leuze Verlag, Saulgau, 1974, pp. 273–275 Search PubMed.
  3. S. Bruckenstein and M. Shay, Electrochim. Acta, 1985, 30, 1295 CrossRef CAS.
  4. G. Sauerbrey, Z. Phys., 1959, 155, 206 CAS.
  5. D. Buttry, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1991, vol. 17 Search PubMed.
  6. M. Benje, M. Eiermann, U. Pittermann and K. G. Weil, Ber. Bunsen-Ges. Phys. Chem., 1986, 90, 435 Search PubMed.
  7. K. Doblhofer, C. Fruböse and D. Soares, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 475.
  8. T. Fili, C. Reinartz, F. Krug and M. Stratmann, to be published.
  9. J. F. H. van Eijnsbergen, in Duplex Systems, Elsevier, Amsterdam, 1994, pp. 47–63 Search PubMed.
  10. R. Grauer and H. Kaesche, Corros. Sci., 1972, 12, 612.
  11. M. Pourbaix, Atlas of Electrochemical Equilibria, CEBELCOR-Pergamon, Oxford, 1996, p. 406 Search PubMed.
  12. A. Hugot-Le Goff, M. C. Bernard, N. Phillips and H. Takenouti, Mater. Sci. Forum, 1995, 192–194, 779 Search PubMed.
  13. M. C. Bernard, A. Hugot-Le Goff and N. Phillips, J. Electrochem. Soc., 1995, 142, 2162 CAS.
  14. Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1st student edn., 1988.
  15. R. D. Armstrong and G. M. Bulman, J. Electroanal. Chem., 1970, 25, 121 CrossRef CAS.
  16. Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corporation, Physical Electronics Division, Eden Prarie, Mn, USA, 1992 Search PubMed.
  17. S. E. Hörnstörm, E. Hedlung, H. Klang, J.-O. Nilsson, M. Backlund and P.-E. Tegehall, Surf. Interface Anal., 1992, 19, 121 CrossRef.
  18. Y. Yoshikawa and J. F. Watts, Surf. Interface Anal., 1993, 20, 379 CAS.
  19. J.-O. Nilsson, S.-E. Hörnström, E. G. Hedlund, H. Klang and K. Uvdal, Surf. Interface Anal., 1992, 19, 379 CrossRef CAS.
  20. C. V. Bishop, D. M. Burdt and K. R. Römer, Galvanotechnik, 1980, 71, 1199 Search PubMed.
  21. K. R. Römer, H. Schmidt and N. Fuchs, Galvanotechnik, 1981, 72, 108 Search PubMed.
  22. M. F. Abd Rabbo, J. A. Richardson and G. C. Wood, Corros. Sci., 1978, 18, 117 CrossRef.
  23. P. E. Tegehall and N. G. Vannenberg, Corros. Sci., 1991, 32, 635 CrossRef CAS.
  24. K. M. Ogle, C. Gabrielli, M. Keddam and H. Perrot, J. Electroanal. Chem., 1994, 141, 2655 CAS.
  25. A. Losch, J. W. Schultze and H. D. Speckmann, Appl. Surf. Sci., 1991, 52, 29 CrossRef CAS.
  26. A. Losch, E. Klusmann and J. W. Schultze, Electrochimica Acta, 1994, 39, 1183 CrossRef CAS.
  27. E. Klusmann, U. König and J. W. Schultze, Materials Corros., 1995, 46, 83 Search PubMed.
  28. Handbuch der Galvanotechnik, ed. W. Dettner and J. Elze, Carl Hanser Verlag, München, 1963 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.