Monte Carlo simulations of pattern formation at solid/solid interfaces

(Note: The full text of this document is currently only available in the PDF Version )

Gert Schulz and Manfred Martin


Abstract

Pattern-formation processes at solid/solid interfaces are investigated by Monte Carlo simulations using an appropriate two-dimensional model system AX/BX with an initially planar, coherent interface. The motion of cations A and B occurs via vacancies in the regular cation sublattice, and the jump frequencies of both A and B are described by a simple Boltzmann-ansatz. Therefore, the jump frequency is a function of temperature and the nearest neighbourhood of each cation, whose influence is determined by repulsive pairwise interaction energies εAA, εAB and εBB. Using appropriate boundary conditions, a directed vacancy flux and, therefore, the growth of one or both phases is caused. In this way an external force, e.g. an external electric field, in a real experiment is simulated. Below a critical temperature TC (limited miscibility between AX and BX), the phase boundary roughens but remains morphologically stable if the less mobile phase is the growing phase. In comparison, a critical parameter ΔεC= εAA-εBB is observed, above which the phase boundary becomes morphologically unstable if the more mobile phase is the growing one. In this case ΔεC is dependent on temperature, the boundary conditions and the external driving force. With increasing Δε a transition from finger-like to branched structures is observed. In exceptional cases the latter can be described as fractals. Similar results are obtained at temperatures above TC (complete miscibility of AX and BX) where we find instabilities of diffusion fronts.


References

  1. Y. Saito, G. Goldbeck-Wood and H. Müller-Krumbhaar, Phys. Rev. A, 1988, 33, 2148 CrossRef.
  2. D. Grier, E. Ben-Jacob, R. Clarke and L. M. Sander, Phys. Rev. Lett., 1986, 56, 1264 CrossRef CAS.
  3. D. L. Ricoult and H. Schmalzried, J. Mater. Sci., 1987, 22, 2257 CAS.
  4. S. Schimschal-Thölke, H. Schmalzried and M. Martin, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 1.
  5. S. Schimschal-Thölke, H. Schmalzried and M. Martin, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 7.
  6. P. A. Flinn and G. M. McManus, Phys. Rev., 1961, 124, 54 CrossRef CAS.
  7. G. Schulz and M. Martin, Solid State Ionics, in press Search PubMed.
  8. H. Bakker, N. A. Stolwijk, L. van der Meij and T. Zuurendonk, Nucl. Metall., 1976, 20, 96 Search PubMed.
  9. R. Kikuchi and H. Sato, J. Chem. Phys., 1969, 51, 161 CrossRef CAS.
  10. R. Kikuchi and H. Sato, J. Chem. Phys., 1972, 57, 4962 CrossRef CAS.
  11. G. E. Murch, in Diffusion in Crystalline Solids, ed. G. E. Murch and A. S. Nowick, Academic Press, Orlando, FL, 1984 Search PubMed.
  12. W. Schweika, in Structural and Phase Stability of Alloys, ed. J. L. Morán-Lopez et al., Plenum Press, New York, 1992 Search PubMed.
  13. G. H. Findenegg, Statistische Thermodynamik, Dietrich Steinkopff Verlag, Darmstadt, 1985 Search PubMed.
  14. B. Sapoval, M. Rosso and J. F. Gouyet, in The Fractal Approach to Heterogeneous Chemistry, ed. D. Avnir, Wiley, New York, 1989 Search PubMed.
  15. P. Meakin, Prog. Solid State Chem., 1990, 20, 135 CrossRef.
  16. H. Teuber and M. Martin, to be published.
  17. M. Martin and H. Schmalzried, Ber. Bunsen-Ges, Phys. Chem., 1985, 89, 124 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.