Computer simulation of zeolite structure and reactivity using embedded cluster methods

(Note: The full text of this document is currently only available in the PDF Version )

Paul Sherwood, Alex H. de Vries, Simon J. Collins, Stephen P. Greatbanks, Neil A. Burton, Mark A. Vincent and Ian H. Hillier


Abstract

The use of bare cluster models to understand the nature of zeolite–substrate interactions may be improved to take account of the environment of the Brønsted acid site. We consider two models for introducing the electrostatic effects of the zeolite lattice. The first involves generating a specialised correction potential by fitting a non-periodic array of ca. 60 point charges to the difference between the bare cluster and periodic potentials. The second starts by fitting a periodic array of atomic charges to the potential of the infinite lattice and then builds up a classical cluster of ca. 2000 atoms into which the QM cluster is embedded. Such embedded cluster calculations, employing a T3 cluster, with electron correlation at the density functional theory level, are described, to model the interaction of water at a Brønsted acid site. Structures of the water–zeolite complex, and associated vibrational frequencies and 1H NMR shifts are calculated and compared with calculations of bare clusters of varying size and with experimental data. We then describe a mixed quantum mechanical–molecular mechanical (QM–MM) model derived by combining charges from the second model with a standard aluminosilicate force field. We report preliminary results on the effect of embedding on the energetics of a prototypical hydrocarbon cracking reaction; the methyl-shift reaction of a propenium ion coordinated to the acid site.


References

  1. R. A. van Santen and G. J. Kramer, Chem. Rev., 1995, 95, 637 CrossRef CAS.
  2. M. Iwamoto, H. Yahiro, N. Mizuno, W. X. Zhang, Y. Mine, H. Furukawa and S. Kagawa, J. Phys. Chem., 1992, 96, 9360 CrossRef CAS.
  3. R. A. van Santen, Stud. Surf. Sci. Catal., 1994, 85, 273 CAS.
  4. U. Fleischer, K. Kutzelnigg, A. Bleiber and J. Sauer, J. Am. Chem. Soc., 1993, 115, 7833 CrossRef CAS.
  5. L. A. Curtiss, H. Brand, J. B. Nicholas and L. E. Iton, Chem. Phys. Lett., 1991, 184, 215 CrossRef CAS.
  6. H. V. Brand, L. A. Curtiss and L. E. Iton, J. Phys. Chem., 1992, 96, 7725 CrossRef CAS.
  7. M. S. Stave and J. B. Nicholas, J. Phys. Chem., 1993, 97, 9630 CrossRef CAS.
  8. E. H. Teunissen, C. Roetti, C. Pisani, A. J. H. de Man, A. J. P. Jansen, R. Orlando, R. A. van Santen and R. Dovesi, Model. Simul. Mater. Sci. Eng., 1994, 2, 921 CrossRef CAS.
  9. R. Shah, J. D. Gale and M. C. Payne, J. Phys. Chem., 1996, 100, 11688 CrossRef CAS.
  10. J. Gao, in Reviews of Computational Chemistry, ed. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 1995, vol. 7, p. 119 Search PubMed.
  11. M. J. Field, P. A. Bash and M. Karplus, J. Comput. Chem., 1990, 11, 700 CrossRef CAS.
  12. U. C. Singh and P. A. Kollman, J. Comput. Chem., 1986, 7, 718 CrossRef CAS.
  13. S. P. Greatbanks, P. Sherwood and I. H. Hillier, J. Phys. Chem., 1994, 98, 8134 CrossRef CAS.
  14. J. R. Hill and J. Sauer, J. Phys. Chem., 1994, 98, 1238 CrossRef CAS.
  15. B. W. H. van Beest, G. J. Kramer and R. A. van Santen, Phys. Rev. Lett., 1990, 64, 1955 CrossRef CAS.
  16. K. P. Schröder, J. Sauer, M. Leslie, C. R. A. Catlow and J. M. Thomas, Chem. Phys. Lett., 1992, 188, 320 CrossRef.
  17. S. P. Greatbanks, I. H. Hillier, N. A. Burton and P. Sherwood, J. Chem. Phys., 1996, 150, 3770 CrossRef CAS.
  18. S. P. Greatbanks, I. H. Hillier and P. Sherwood, J. Comput. Chem., 1997, 18, 562 CrossRef.
  19. S. J. Collins, A. H. de Vries, P. Sherwood, S. P. Greatbanks and I. H. Hillier, J. Comput. Chem., submitted Search PubMed.
  20. D. Bakowies and W. Thiel, J. Phys. Chem., 1996, 100, 10580 CrossRef CAS.
  21. J. R. Hill and J. Sauer, J. Phys. Chem., 1995, 99, 9536 CrossRef CAS.
  22. S. T. Sie, Ind. Eng. Chem. Res., 1992, 31, 1881 CrossRef CAS.
  23. A. D. Becke, J. Chem. Phys., 1993, 98, 1372 CrossRef CAS; P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623 CrossRef CAS.
  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Revision A.1, Gaussian Inc., Pittsburgh, PA, 1995.
  25. R. Ditchfield, Mol. Phys., 1974, 27, 789 CAS.
  26. K. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251 CrossRef CAS.
  27. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571 CrossRef.
  28. W. G. Schneider, H. J. Bernstein and J. A. Pople, J. Chem. Phys., 1958, 28, 601 CrossRef CAS.
  29. J. B. Nicholas, F. R. Trouw, J. E. Mertz, L. E. Iton and A. J. Hopfinger, J. Phys. Chem., 1993, 97, 4149 CrossRef CAS.
  30. E. de Vos-Burghart, V. A. Verheij, H. van Bekkum and B. van de Graaf, Zeolites, 1992, 12, 183 CrossRef CAS.
  31. GAMESS-UK is a package of ab initio programs written by M. F. Guest, J. H. van Lenthe, J. Kendrick, K. Schoeffel and P. Sherwood, with contributions from R. D. Amos, R. J. Buenker, M. Dupuis, N. C. Handy, I. H. Hillier, P. J. Knowles, V. Bonacic-Koutecky, W. von Niessen, A. P. Rendell, V. R. Saunders and A. J. Stone. The package was derived from the original GAMESS code due to M. Dupuis, D. Spangler and J. Wendoloski, NRCC Software Catalog, vol. 1, Program QG01 (GAMESS) 1980.
  32. DL POLY is a package of molecular simulation routines written by W. Smith and T. R. Forester, copyright The Council for the Central Laboratory of the Research Councils, Daresbury Laboratory, nr. Warrington, 1996.
  33. M. Dupuis, A. Farazdel, S. P. Karma and S. A. Maluendes, in MOT ECC-90, ed. E. Clementi, ESCOM, Leiden, 1990, p. 277 Search PubMed.
  34. M. Krossner and J. Sauer, J. Phys. Chem., 1996, 100, 6199 CrossRef CAS.
  35. A. G. Pelmenschikov and R. A. van Santen, J. Phys. Chem., 1993, 97, 10678 CrossRef CAS.
  36. S. A. Zygmunt, L. A. Curtiss, L. E. Iton and M. K. Erhardt, J. Phys. Chem., 1996, 100, 6663 CrossRef CAS.
  37. J. Sauer, P. Ugliengo, E. Garrone and V. R. Saunders, Chem. Rev., 1994, 94, 2095 CrossRef CAS.
  38. P. E. Sinclair and C. R. A. Catlow, J. Chem. Soc., Faraday Trans., 1997, 93, 333 RSC.
  39. A. Jentys, G. Warecka, M. Derewinski and J. Lercher, J. Phys. Chem., 1989, 93, 4837 CrossRef CAS.
  40. M. F. Clydon and N. Sheppard, Chem. Commun., 1969, 1431 RSC.
  41. A. G. Pelmenschikov, J. H. M. C. van Wolput, J. Janchen and R. A. van Santen, J. Phys. Chem., 1995, 99, 3612 CrossRef.
  42. M. Hunger, D. Freude and H. Pfeifer, J. Chem. Soc., Faraday Trans., 1991, 87, 657 RSC.
  43. P. Batamack, C. Doremieux-Morin and J. Fraissard, J. Chim. Phys., 1992, 89, 423 Search PubMed.
  44. P. Batamack, C. Doremeiux-Morin, J. Fraissard and D. Freude, J. Phys. Chem., 1991, 95, 3790 CrossRef CAS.
  45. Z. Luz and A. J. Vega, J. Phys. Chem., 1987, 91, 374 CrossRef CAS.
  46. B. T. Thole and P. Th. van Duijnen, Theoret. Chim. Acta, 1987, 63, 209 CrossRef.
  47. B. T. Thole and P. Th. van Duijnen, Theoret. Chim. Acta, 1980, 55, 307 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.