From oxides to oxyhalides: modelling the properties of high TCsuperconductors

(Note: The full text of this document is currently only available in the PDF Version )

M. Saiful Islam, Mark S. D. Read and Severine D'Arco


Abstract

Atomistic computer simulation techniques are used to investigate the defect properties of high temperature superconductors, in an attempt to illustrate the type of information that can be obtained from the modelling of these complex materials. Attention is focused on two systems: the mercury cuprate HgBa2CuO4+δ, which is the first member of the homologous series HgBa2Can-1CunO2n+2+δ, and the copper oxychloride Ca2CuO2Cl2, which is part of a new family of oxyhalide superconductors. Effective interatomic potentials are used to reproduce accurately their observed crystal structures. A range of redox and dopant substitution reactions relevant to high TC behaviour have been examined. The results are consistent with the experimental observation that HgBa2CuO4+δ becomes superconducting by oxygen incorporation at interstitial sites, while Ca2CuO2Cl2 shows superconductivity only on doping with alkali metal ions at the calcium site. We also consider the energetics of dopant substitution on the copper sublattice of the oxychloride. Our study indicates the value of computer simulation methods in examining the nature of defect reactions at the atomic level.


References

  1. J. G. Bednorz and K. A. Muller, Z. Phys. B: Condens. Matter, 1986, 64, 189 Search PubMed.
  2. M. A. E. Aranda, Adv. Mater., 1994, 6, 905 CrossRef CAS.
  3. R. J. Cava, Science, 1990, 247, 656 CAS.
  4. A. Schilling, M. Cantoni, J. D. Gao and H. R. Ott, Nature (London), 1993, 363, 56 CrossRef CAS.
  5. C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng and Y. Y. Yue, Nature (London), 1993, 365, 323 CrossRef CAS.
  6. M. S. Islam, M. Leslie, S. M. Tomlinson and C. R. A. Catlow, J. Phys. C., 1988, 21, L1085 CrossRef CAS; M. S. Islam and R. C. Baetzold, Phys. Rev. B., 1989, 40, 10926 CrossRef CAS; J. Mater. Chem., 1994, 4, 299 Search PubMed.
  7. M. S. Islam and L. J. Winch, Phys. Rev. B., 1995, 52, 10510 CrossRef CAS; J. Chem. Soc., Chem. Commun., 1995, 1595 Search PubMed.
  8. M. S. Islam and S. D'Arco, Chem. Commun., 1996, 2291 RSC; Phys. Rev. B., 1997, 55, 3141 Search PubMed.
  9. N. L. Allan and W. C. Mackrodt, Adv. Solid State Chem., 1993, 3, 219 Search PubMed; J. Am. Ceram. Soc., 1990, 73, 3175 Search PubMed.
  10. X. Zhang and C. R. A. Catlow, J. Mater. Chem., 1991, 1, 233 RSC; Physica C., 1991, 173, 25 Search PubMed.
  11. R. C. Baetzold, Phys. Rev. B., 1988, 38, 11304 CrossRef CAS; Mol. Sim., 1994, 12, 77 Search PubMed.
  12. S. N. Putilin, E. V. Antipov, O. Chmaissem and M. Marezio, Nature (London), 1993, 362, 226 CrossRef CAS.
  13. J. L. Wagner, P. G. Radaelli, D. G. Hinks, J. D. Jorgensen, J. F. Mitchell, B. Dabrowski, G. S. Knapp and M. A. Beno, Physica C, 1993, 210, 447 CrossRef CAS.
  14. Z. Hiroi, N. Kobayashi and M. Takano, Nature (London), 1994, 371, 139 CrossRef CAS.
  15. D. N. Argyriou, J. D. Jorgensen, R. L. Hitterman, Z. Hiroi, N. Kobayashi and M. Takano, Phys. Rev. B, 1995, 51, 8434 CrossRef CAS.
  16. B. G. Dick and A. W. Overhauser, Phys. Rev., 1958, 112, 90 CrossRef.
  17. C. R. A. Catlow, in Solid State Chemistry: Techniques, ed. A. K. Cheetham and P. Day, Clarendon Press, Oxford, 1987 Search PubMed.
  18. N. F. Mott and M. T. Littleton, Trans. Faraday Soc., 1938, 34, 485 RSC.
  19. J. Chem. Soc., Faraday Trans 2., 1989, 85, 335–579 Search PubMed.
  20. M. Leslie, CASCADE code, Daresbury Laboratory, UK, 1982.
  21. J. D. Gale, J. Chem. Soc., Faraday Trans., 1997, 93, 629 RSC.
  22. M. A. Subramanian and M. H. Whangbo, J. Solid State Chem., 1994, 109, 410 CrossRef CAS.
  23. Q. Xiong, Y. Y. Xue, F. Chen, Y. Gao, Y. Y. Sun, L. M. Liu, A. J. Jacobson and C. W. Chu, Physica C, 1994, 231, 233 CrossRef CAS.
  24. J. L. Routbort and S. J. Rothman, J. Appl. Phys., 1994, 76, 5615 CrossRef CAS.
  25. M. Al-Mamouri, P. P. Edwards, C. Greaves and M. Slaski, Nature (London), 1994, 369, 382 CrossRef CAS.
  26. C. Chaillout, S. W. Cheong, Z. Fisk, M. S. Lehman, M. Marezio, B. Morosin and J. E. Schirber, Physica C, 1989, 158, 183 CrossRef CAS.
  27. J. D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards and D. E. Hinks, Phys. Rev. B, 1989, 40, 2187 CrossRef CAS.
  28. C. Q. Jin, X. J. Wu, P. Laffez, T. Tatsuki, T. Tamura, S. Adachi, H. Yamauchi, N. Koshizuka and S. Tanaka, Nature (London), 1995, 375, 301 CrossRef CAS.
  29. G. V. Lewis and C. R. A. Catlow, J. Phys. C., 1985, 18, 1149 CrossRef CAS; J. Phys. Chem. Solids, 1986, 47, 89 Search PubMed.
  30. C. R. A. Catlow, K. M. Diller and M. J. Norgett, J. Phys. C., 1977, 10, 1395 CrossRef CAS.
  31. T. Tatsuki, S. Adachi, M. Itoh, T. Tatura, X. J. Wu, C. Q. Jin, N. Koshizuka and K. Tanabe, Physica C., 1995, 255, 61 CrossRef CAS.
  32. C. N. R. Rao and B. Raveau, Acc. Chem. Res., 1989, 22, 106 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.